多场景PAI-Diffusion中文模型家族大升级,12个模型、2个工具全部开源

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 在本文中,将详细介绍PAI-Diffusion中文模型家族及其工具Chinese Diffusion WebUI和Diffuser-API的使用。

1.概述


在过去几年中,随着AI生成内容(AI Generated Content,AIGC)的快速发展,Stable Diffusion模型在该领域崭露头角。阿里云机器学习PAI团队为推动这一领域的发展,参考了Stable Diffusion的模型结构,结合中文语言的特点,通过大量对模型预训练数据的处理和过滤,以及训练过程的优化,提出了PAI-Diffusion中文文图生成模型,实现了图像生成质量的大幅提升和风格多样化(看这里)。PAI-Diffusion模型的Pipeline不仅包含了标准的Diffusion Model,还集成了中文CLIP跨模态对齐模型,使得模型能够生成符合中文文本描述的各种场景下的高清大图(看这里)。此外,我们也推出了PAI的自研Prompt美化器BeautifulPrompt,赋能Stable Diffusion类应用一键出美图(看这里)。

我们在这次的工作中,将PAI-Diffusion中文模型家族扩展到多种应用场景,支持文生图、文图生图、图像修复、LoRA、ControlNet等多种常见功能。为了更好地与开源社区互动,我们将12个PAI-Diffusion中文模型(包括基础模型、LoRA、ControlNet等)全部开源,并支持用户自由下载和使用,与开发者一起共同推动AI生成内容技术的发展,创造出更有创意和影响力的作品。此外,PAI-Diffusion中文模型对应两个推理工具也在开源社区推出。其中,Chinese Diffusion WebUI作为Stable Diffusion WebUI的插件与PAI-EAS无缝兼容,支持5分钟内一键在PAI-EAS拉起中文AIGC应用;Diffusers-API也完美支持中文模型的快速部署和推理。

在下文中,我们详细介绍PAI-Diffusion中文模型家族及其工具Chinese Diffusion WebUI和Diffuser-API的使用。


2.多场景的PAI-Diffusion中文模型家族


我们利用海量中文图文对数据,训练了如下12个模型,包括基础模型、LoRA、ControlNet等,模型列表如下:

模型名

类别

使用场景

pai-diffusion-general-large-zh

基础模型

中文文图生成通用模型,默认支持生成图像分辨率为512*512

pai-diffusion-general-large-zh-controlnet-canny

ControlNet

上述模型用于边缘图的ControlNet

pai-diffusion-general-large-zh-controlnet-depth

ControlNet

上述模型用于深度图的ControlNet

pai-diffusion-general-xlarge-zh

基础模型

中文文图生成通用模型(更大分辨率),默认支持生成图像分辨率为768*768

pai-diffusion-artist-large-zh

基础模型

中文文图生成艺术模型,默认支持生成图像分辨率为512*512

pai-diffusion-artist-large-zh-controlnet-canny

ControlNet

上述模型用于边缘图的ControlNet

pai-diffusion-artist-large-zh-controlnet-depth

ControlNet

上述模型用于深度图的ControlNet

pai-diffusion-artist-large-zh-lora-poem

LoRA

上述模型用于中文古诗画的LoRA

pai-diffusion-artist-large-zh-lora-25d

LoRA

上述模型用于2.5D插画的LoRA

pai-diffusion-artist-xlarge-zh

基础模型

中文文图生成艺术模型(更大分辨率),默认支持生成图像分辨率为768*768

pai-diffusion-food-large-zh

基础模型

中文文图生成美食模型,默认支持生成图像分辨率为768*768

pai-diffusion-anime-large-zh

基础模型

中文文图生成二次元模型,默认支持生成图像分辨率为768*512

上述所有模型都可以在我们的Hugging Face Space进行下载,我们的模型也可以通过ModelScope进行调用模型生成的效果如下所示:

下面给出了三个PAI-Diffusion中文模型的应用场景:

应用场景一:输入草稿图和对应的Prompt,生成精细的艺术图画。

应用场景二:污染破损的古诗词绘画图像的修复,即image in-painting。

应用场景三:为国风游戏绘制中国古代室内场景

为了尽可能提升模型输出图像的质量,我们搜集海量开源的图文对数据集,包括大规模中文跨模态预训练数据集WuKong、大规模多语言多模态数据集LAION-5B等。此外,我们也搜集了大量不同领域、不同场景的数据集,用于扩展PAI-Diffusion中文模型家族的应用场景。我们针对图像和文本进行了多种清洗方式,筛选掉低质量数据。具体的数据处理方式包括NSFW(Not Safe From Work)数据过滤、水印数据去除,我们也使用CLIP分数和美观值分数评分,过滤CLIP分数和美观值分数较低的数据,保证生成图像的语义一致性和质量。为了适配中文语义场景,我们的CLIP Text Encoder采用EasyNLP自研的中文CLIP模型(https://github.com/alibaba/EasyNLP)进行建模,使得模型更懂中文语言。


3.PAI-Diffusion中文模型部署工具


本节详细介绍PAI-Diffusion中文模型对应的两个开源工具。Chinese Diffusion WebUI作为插件与PAI-EAS无缝兼容,支持5分钟内一键拉起中文AIGC应用;Diffusers-API通过API形式支持中文模型的快速部署和推理。

3.1Chinese Diffusion WebUI

由于Stable Diffusion WebUI无法原生支持中文模型,我们开发了Chinese Diffusion WebUI,作为Stable Diffusion WebUI的插件提供给用户。它提供了图形划的用户界面,使用户(尤其是没有编程经验的设计师)可以使用PAI-Diffusion中文模型的多种功能,例如文生图、图生图、图像风格迁移、图像编辑等。Chinese Diffusion WebUI的界面如下图所示:

为了方便用户在PAI-EAS上使用Chinese Diffusion WebUI,我们的插件也支持了两种模式:单机版本和集群版本,用户可以根据需求和资源选择不同的模式。在单机版中,用户在独占的节点上使用Chinese Diffusion WebUI,特别方便个人设计师的使用。集群版利用PAI的弹性推理服务,实现并行处理,高效利用和共享计算资源,从而实现了更高的资源利用率。

此外,Chinese Diffusion WebUI也可以在非PAI-EAS环境下使用,用户只需要在下载Chinese Diffusion WebUI插件,放置在标准Stable Diffusion WebUI的插件目录下就可以实现本地的使用了。

3.2Diffusers-API

Diffusers-API是阿里云机器学习PAI团队开源的、基于Diffusers的文图生成云服务SDK。用户可以直接基于本项目提供的镜像,在PAI-EAS上部署各种Diffusion相关服务,例如文生图、图生图、LoRA、ControlNet等。Diffusers-API还基于PAI-Blade对模型进行了推理优化,降低推理流程的端到端延迟 2.3 倍,同时可显著降低显存占用,超过TensorRT-v8.5等业内SOTA优化手段。

在Diffusers-API中,我们使用StableDiffusionLongPromptWeightingPipeline作为默认的推理接口,以支持带有权重的、无长度限制的英文Prompt。然而,Diffusers默认的推理接口无法无缝支持中文文本的处理。我们扩展了StableDiffusionLongPromptWeightingPipeline,根据载入模型的Text Encoder,自动检测语言,并且进行适配,使得无需修改Diffusers-API的任何接口的条件下,支持社区Stable Diffusion和PAI-Diffusion中文模型的一键部署,其HTTP请求体示例如下:

{
  "task_id" : "001",
  "prompt": "一只可爱的小猫咪",
  "negative_prompt": "模糊",
  "cfg_scale": 7,
  "steps": 25,
  "image_num": 1,
  "width": 512,
  "height": 512,
  "use_base64": True
}

部署PAI-Diffusion中文模型的步骤详见这里


4.总结


通过先前的PAI-Diffusion中文模型的开源,我们成功提升了图像生成质量和风格多样化,并实现了中文文本描述下各种场景的高清大图生成。此外,我们还推出了自研的Prompt美化器BeautifulPrompt,为Stable Diffusion类应用提供了一键美图的能力。在本次的工作中,我们不仅将PAI-Diffusion中文模型家族扩展到多种应用场景,还全面开源了12个PAI-Diffusion中文模型,包括基础模型、LoRA、ControlNet等。我们的工作希望为开发者们提供更多的创作可能性和创新机会,共同推动AI生成内容技术的发展,创造出更有创意和影响力的作品。此外,我们还推出了两个开源工具,Chinese Diffusion WebUI和Diffuser-API,提供便捷的使用体验。Chinese Diffusion WebUI作为插件与PAI-EAS无缝兼容,支持用户在5分钟内快速搭建中文AIGC应用;而Diffusers-API则完美支持中文模型的快速部署和推理。我们期待与开发者们共同推动AI生成内容技术的前进。


5.PAI-Diffusion系列文章回顾


相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
21天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
285 109
|
1月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
170 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
2月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
191 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
1月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
2月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
|
3月前
|
缓存 人工智能 负载均衡
PAI 重磅发布模型权重服务,大幅降低模型推理冷启动与扩容时长
阿里云人工智能平台PAI 平台推出模型权重服务,通过分布式缓存架构、RDMA高速传输、智能分片等技术,显著提升大语言模型部署效率,解决模型加载耗时过长的业界难题。实测显示,Qwen3-32B冷启动时间从953秒降至82秒(降幅91.4%),扩容时间缩短98.2%。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
MiniMax公司6月17日推出4560亿参数大模型M1,采用混合专家架构和闪电注意力机制,支持百万级上下文处理,高效的计算特性使其特别适合需要处理长输入和广泛思考的复杂任务。阿里云PAI-ModelGallery现已接入该模型,提供一键部署、API调用等企业级解决方案,简化AI开发流程。

相关产品

  • 人工智能平台 PAI