EfficientFormer:高效低延迟的Vision Transformers

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 我们都知道Transformers相对于CNN的架构效率并不高,这导致在一些边缘设备进行推理时延迟会很高,所以这次介绍的论文EfficientFormer号称在准确率不降低的同时可以达到MobileNet的推理速度。

我们都知道Transformers相对于CNN的架构效率并不高,这导致在一些边缘设备进行推理时延迟会很高,所以这次介绍的论文EfficientFormer号称在准确率不降低的同时可以达到MobileNet的推理速度。

Transformers能否在获得高性能的同时,跑得和MobileNet一样快?为了回答这个问题,作者首先回顾了基于vit的模型中使用的网络架构和运算,并说明了一些低效的设计。然后引入一个维度一致的纯Transformer(没有MobileNet块)作为设计范例。最后以延迟为目标进行优化设计,获得一系列称为EfficientFormer的最终模型。最后还设计了EfficientFormerV2。

延迟分析

作者在论文中发现:

1、内核大、步幅大的补丁嵌入是移动设备上的速度瓶颈。

2、一致的特征维度对于令牌混合器的选择很重要。MHSA不一定是速度瓶颈。

3、convn - bn比LN (GN)-Linear更有利于延迟,对于延迟的降低,精度的小损失是可以接受的。

4、非线性的延迟取决于硬件和编译器。

EfficientFormer整体架构

该网络由补丁嵌入(PatchEmbed)和元Transformer块堆栈组成,表示为MB:

X0为批大小为B,空间大小为[H, W]的输入图像,Y为期望输出,m为块总数(深度)。MB由未指定的令牌混合器(TokenMixer)组成,后跟一个MLP块:

Xi|i>0是第i MB的中间特征。阶段Stage(或S)被定义为几个MetaBlocks的堆栈。该网络包括4个阶段。在每个阶段中,都有一个嵌入操作来投影嵌入维数和下采样令牌长度,表示为嵌入,如上图所示。

也就是说effentformer是一个完全基于transformer的模型,没有集成MobileNet结构。

Dimension-Consistent设计

网络从四维划分开始,后期进行三维划分。首先,输入图像由stem层进行处理,这是两个3 × 3,步幅为2的卷积作为patch嵌入:

其中Cj是第j级的通道号(宽度)。然后网络从MB4D开始,使用简单的Pool mixer提取低级特征:

式中,ConvB,G表示是否有BN和GeLU跟随卷积。在处理完所有MB4D块后,执行一次重塑以转换特征大小并进入3D分区。MB3D使用传统的ViT:

式中,LinearG表示线性后接GeLU, MHSA为:

其中,Q, K, V分别表示查询,键和值,b是参数化的作为位置编码的注意力偏差。

在定义了总体体系结构之后,下一步作者就开始搜索高效的体系结构。

以延迟为目标架构优化

定义了一个搜索高效模型的超级网络MetaPath (MP),它是一些可能块的集合:

其中I表示单位路径。

在网络的S1和S2中,每个区块可以选择MB4D或I,在S3和S4中,每个区块可以选择MB3D、MB4D或I。

在最后两个阶段只启用MB3D的原因有2个:1、由于MHSA的计算相对于令牌长度呈二次增长,因此在早期阶段将其集成将大大增加计算成本。2、网络的早期阶段捕获低级特征,而后期阶段学习长期依赖关系。

搜索空间包括Cj(每个Stage的宽度),Nj(每个Stage的块数,即深度)和最后N个应用MB3D的块。

搜索算法使用Gumbel Softmax采样对超级网络进行训练,以获得每个MP内块的重要性得分:

其中α评估MP中每个块的重要性,因为它表示选择一个块的概率。ε ~ U(0,1)保证探索。对于S1和S2, n∈{4D, I},对于S3和S4, n∈{4D, 3D, I}。

最后通过收集不同宽度的MB4D和MB3D的设备上延迟(16的倍数),构建一个延迟查找表。

也就是说EfficientFormer的架构不是通过人工设计的,而是通过NAS(Neural Architecture Search)搜索出来的。作者通过查找表计算每个动作产生的延迟,并评估每个动作的准确率下降。根据每延迟精度下降(-%/ms)选择动作。这个过程迭代地执行,直到达到目标延迟。(细节见论文附录)

结果展示

ImageNet上与广泛使用的基于cnn的模型相比,EfficientFormer在准确率和延迟之间实现了更好的权衡。

传统的vit在延迟方面仍然表现不佳。EfficientFormer-L3的top-1准确率比PoolFormer-S36高1%,在Nvidia A100 GPU上快3倍,在iPhone NPU上快2.2倍,在iPhone CPU上快6.8倍。

EfficientFormer-L1的Top1精度比MobileViT-XS高4.4%,并且在不同的硬件和编译器上运行得更快。

MS COCO数据集,EfficientFormers的表现始终优于CNN (ResNet)和Transformer (PoolFormer)。

使用ADE20K,在类似的计算预算下,EfficientFormer始终比基于CNN和transformer的主干性能好得多。

论文地址:

EfficientFormer: Vision Transformers at MobileNet Speed

https://avoid.overfit.cn/post/eb0e56c5753942cf8ee70d78e2cd7db7

目录
相关文章
|
6月前
|
机器学习/深度学习 并行计算 PyTorch
TensorRT部署系列 | 如何将模型从 PyTorch 转换为 TensorRT 并加速推理?
TensorRT部署系列 | 如何将模型从 PyTorch 转换为 TensorRT 并加速推理?
946 0
|
1月前
|
机器学习/深度学习 算法 测试技术
3天把Llama训成Mamba,性能不降,推理更快!
【10月更文挑战第7天】论文《Distilling and Accelerating Hybrid Models》提出了一种将大型Transformer模型高效转化为线性RNN模型的新方法,通过重用注意力层中的线性投影权重,实现性能不降甚至提升。研究通过多阶段蒸馏方法训练模型,包括渐进蒸馏、监督微调和定向偏好优化,确保了模型在标准聊天基准测试中的优异表现。实验结果表明,蒸馏后的混合模型在多个任务上与原模型及同类模型相比,表现出色或更优。然而,该方法仍需大量计算资源,并在特定任务上可能存在性能差距。
40 1
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
使用BatchNorm替代LayerNorm可以减少Vision Transformer训练时间和推理时间
本文探讨了在Vision Transformer (ViT)架构中采用批量归一化(BatchNorm)替代层归一化(LayerNorm)的影响。ViT以其在计算机视觉领域的优异表现而闻名,但存在训练耗时长及对小型数据集推理速度慢的问题。文章提出两种改进模型:ViTBNFFN,在前馈网络中加入BatchNorm;ViTBN,则全面替换为BatchNorm。
94 1
使用BatchNorm替代LayerNorm可以减少Vision Transformer训练时间和推理时间
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
ONNX 优化技巧:加速模型推理
【8月更文第27天】ONNX (Open Neural Network Exchange) 是一个开放格式,用于表示机器学习模型,使模型能够在多种框架之间进行转换。ONNX Runtime (ORT) 是一个高效的推理引擎,旨在加速模型的部署。本文将介绍如何使用 ONNX Runtime 和相关工具来优化模型的推理速度和资源消耗。
1433 4
|
3月前
|
算法 异构计算
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决
|
6月前
|
机器学习/深度学习 存储 编解码
IJCAI2023 | 高效训练Transformers的方法
IJCAI2023 | 高效训练Transformers的方法
73 2
|
并行计算 数据可视化 Java
模型推理加速系列 | 01:如何用ONNX加速BERT特征抽取(附代码)
本次实验目的在于介绍如何使用ONNXRuntime加速BERT模型推理。实验中的任务是利用BERT抽取输入文本特征,至于BERT在下游任务(如文本分类、问答等)上如何加速推理,后续再介绍。
|
机器学习/深度学习 人工智能 并行计算
模型推理加速系列 | 02:如何用ONNX加速BERT特征抽取-part2(附代码)
本文紧接之前的一篇文章如何用ONNX加速BERT特征抽取,继续介绍如何用ONNX+ONNXRuntime来加速BERT模型推理。
|
机器学习/深度学习 自然语言处理 算法
计算机视觉论文速递(九)EfficientFormer: Vision Transformers at MobileNet Speed 轻量化实时推理的Transformer模型
Vision Transformers (ViT) 在计算机视觉任务中取得了快速进展,在各种基准测试中取得了可喜的成果。然而,由于大量的参数和模型设计,例如注意力机制,基于 ViT 的模型通常比轻量级卷积网络慢几倍。因此,应用部署 ViT 具有很大的挑战性,尤其是在移动设备等资源受限的硬件上。
314 0
|
并行计算 固态存储 Linux
下一篇
无影云桌面