欺诈检测--大数据的安全管理

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

现在越来越多的银行业务依赖大数据和物联网基础设施,比如,移动支付、网上银行和智能售货机。但在这些交易过程中存在大量的个人敏感的身份信息需要保护。大数据安全是一个极大挑战的问题,因为作弊者在不断的寻求新方法来获取到有价值的数据。为了防止这些坏家伙,人们需要不断的去设计和发布新的大规模预测模型来预测作弊者的行为。不光银行需要大数据安全保护,任何含有对个人用户信息personally identifiable information (PII)处理的商业交易都要做好保护,比如,医疗机构和保险业。

最近有好消息称,有越来越多的机器学习的专家、新的技术和工具来提供有效的分析模型,能够鉴别潜在的 欺诈交易和钓鱼式攻击 。但不是所有公司都拥有机器学习专家来做这方面的工作,因此这些公司就需要从外面请一些专家来建立有效的模型来抵制作弊者。与此同时,他们又不想自己用户的信息让其他公司知道。通过匿名用户个人信息PII还保证不了这一点。那有没有一种较好的方法能够既利用外部力量而又不暴露本公司的敏感的数据呢?

大数据

图一在纽约最近的一次大数据会议上,大数据公司MapR的首席架构师Ted Dunning发表了一种新方法来解决上述问题。

找出被盗商家

现在一个新的趋势是:作弊者通过成千上万的用户盗取个人信息来进行许多小批量的欺诈交易。这样他们可以在很短的时间里盗取百万美元/英镑/欧元,通过被盗的商家或者网站来获取大量的顾客的金融信息。作弊者不是偷一张信用卡然后去购买大宗商品,因为这种行为容易被现在的安全软件探测到,而是通过欺骗交易来进行大批量的信用卡交易。这些小额购买常常被用户忽略,但是恰恰会被不良作弊者利用。为了应对这种潜在的通过被盗商家来进行盗窃的行为,一家大型金融机构采用大数据公司MapR的技术来构建新的模型来检测这种分布式攻击。他们的目标是改善自己的欺诈检测的能力:a)探测出更多的可疑事件,b)更及时的检测,在出现严重的影响之前尽可能的快的去关闭受影响的账户。

银行有海量的个人交易行为数据,Ted的方法是把银行的每个顾客的交易数据按时间序列转换,在商家出现被盗之前找出来。他采用的相似估计的方法把每个被盗商家的特征点提取出来,然后进行打分。但问题在于即使是出于打击盗取者,银行也不太愿意把敏感的数据分享出来。

为了克服这个问题,Ted写了一个可根据个人需求定制的样本数据生成的代码 log-synth ,并开源在Github上。通过log-synth生成被盗过的用户历史数据模拟来找出被盗的特征。在模拟数据实验中,被盗商家有较高的打分。

构建好探测模型,并进行参数调优,然后将这个模型应用到真实的交易数据。真实的数据分析更令人振奋,一个商家打分超过80分的(见图2),经银行核实发现这个商家的确存在大量的数据泄露。

  图2 通过模拟数据构建的模型运用到真实数据中的情况

更好的数据模拟的方法

使用人为生成的数据来进行构建模型并不新鲜,但是这种方法却经常被人忽视。Ted发现,想精确模拟真实世界的行为特征是非常难的一件事,而通过人为生成的数据就可以很好的构建好的模型,这样更快更容易。

这种方法不仅仅用于欺诈检测,也可以用于其它真实的情况。具体怎样使用开源log-synth,在这里由于篇幅限制就不再细激昂,感兴趣的可以去看Ted Dunning和Ellen Friedman写的书 《Sharing Big Data Safely: Managing Data Security》 ,可免费下载。


本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
80 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
53 0
|
4月前
|
机器学习/深度学习 算法 大数据
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
本文提供了2023年MathorCup高校数学建模挑战赛大数据竞赛赛道A的解决方案,涉及基于计算机视觉的坑洼道路检测和识别任务,包括数据预处理、特征提取、模型建立、训练与评估等步骤的Python代码解析。
83 0
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
|
存储 分布式计算 DataWorks
【MaxCompute 常见问题】 安全管理
MaxCompute可以对单个表授权吗? MaxCompute 提供了 ACL(基于对象)、跨项目数据分享和项目数据保护等多种授权方式。我们推荐您优先使用ACL 授权,而非 Policy(基于策略)授权。
【MaxCompute 常见问题】 安全管理
|
SQL 分布式计算 DataWorks
MaxCompute安全管理指南-案例篇
通过《MaxCompute安全管理-基础篇》了解到MaxCompute和DataWorks的相关安全模型、两个产品安全方面的关联,以及各种安全操作后,本篇主要给出一些安全管理案例,给安全管理的成员作为参考。
2477 0
|
分布式计算 运维 DataWorks
MaxCompute安全管理指南-基础篇
背景及目的 方便和辅助MaxCompute的project owner或安全管理员进行project的日常安全运维,保障数据安全。 MaxCompute有安全模型,DataWorks也有安全模型,当通过DataWorks使用MaxCompute,而DataWorks的安全模型不满足业务安全需求时,合理的将两个安全模型结合使用就尤其重要。
4307 0
|
安全 大数据
贵阳市政府联合阿里成立研究中心:共推大数据安全管理与数据安全产业发展
11月28日,贵阳市政府与阿里巴巴联合发起成立大数据安全工程研究中心,旨在开展大数据安全研究和实践,树立全国大数据安全测评认证的示范标杆,打造一套成熟的大数据安全服务产品体系,培养一流的数据安全专业人才队伍。
2525 0