Java中synchronized:特性、使用、锁机制与策略简析

简介: Java中synchronized:特性、使用、锁机制与策略简析

synchronized的特性

互斥性

synchronized确保同一时间只有一个线程可以进入同步块或同步方法,避免了多线程并发访问共享资源的冲突问题。

synchronized 会起到互斥效果,某个线程执行到某个对象的 synchronized 中时, 其他线程如果也执行到同一个对象 synchronized 就会阻塞等待。

下面我们来看一个例子,两个线程获取同一个锁,锁被占用后,剩下的那个线程就会进行阻塞等待。

public class test2 {
    public static void main(String[] args) {
        Object object = new Object();
        Thread t1 =  new Thread(()->{
        //进入 synchronized 修饰的代码块, 相当于 加锁
          synchronized (object) {
              for (int i = 0; i < 5; i++) {
                  System.out.println("线程t1获取锁");
                  try {
                      Thread.sleep(1000);
                  } catch (InterruptedException e) {
                      throw new RuntimeException(e);
                  }
              }
          }
        //退出 synchronized 修饰的代码块, 相当于 解锁  
        });
        Thread t2 = new Thread(()->{
            synchronized (object) {
                for (int i = 0; i < 5; i++) {
                    System.out.println("线程特t2获取锁");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        throw new RuntimeException(e);
                    }
                }
            }
        });
        t1.start();
        t2.start();
    }
}

由结果我们可以知道,线程一释放锁后,由操作系统唤醒线程二才能获取到锁。

synchronized的底层是使用操作系统的mutex lock实现的。

可见性

内存可见性是指当一个线程修改了共享变量的值后,其他线程能够立即看到修改的值。在多线程环境中,由于多个线程同时访问共享变量,每个线程都有自己的工作内存,而工作内存中保存了主内存中的部分数据副本。因此,当一个线程修改了共享变量的值,但这个修改尚未被刷新到主内存时,其他线程可能无法立即看到这个修改,而继续使用自己工作内存中的旧值,造成了内存不可见性。

synchronized 既能保证原子性,也能保证内存可见性,一个线程对共享变量的修改对于其他线程是可见的。

class Counter {
    public static int flag = 0;
}
public class test3 {
    public static void main(String[] args) {
        Object object = new Object();
        Thread t1 = new Thread(() -> {
            while (true) {
                synchronized (object) {
                    if (Counter.flag != 0) {
                        break;
                    }
                }
            }
            System.out.println("线程一知道了共享变量改为" + Counter.flag);
        });
        Thread t2 = new Thread(() -> {
            Scanner scanner = new Scanner(System.in);
            System.out.println("输入一个整数:");
            Counter.flag = scanner.nextInt();
        });
        t1.start();
        t2.start();
    }
}

如果线程一不加synchronized,那么共享变量的改变它就感知不到,以至于程序一直在运行中。

可重入性

synchronized 同步块对同一条线程来说是可重入的,不会出现自己把自己锁死的问题。

可以理解为一个线程没有释放锁,然后又尝试再次加锁。

按照之前对锁的理解就是,锁没有释放,进行再次加锁就会进行阻塞,直到第一次的锁被释放,才能获取到第二个锁,但释放第一个锁也由该线程来进行,结果现在这个线程啥都干不了,也就只能形成死锁了。

这样的锁称其为不可重入锁。

我们的synchronized是可重入锁。

在重入锁的内部有两个信息,分别为“程序计数器”和“线程持有者”

  • 如果某个线程加锁的时候,发现锁已经被人占用,但是恰好占用的正是自己, 那么仍然可以继续获取到锁,并让计数器自增。
  • 解锁的时候计数器递减为 0 的时候,才真正释放锁。

synchronized的使用方法

  1. 直接修饰普通方法: 锁的 SynchronizedDemo 对象
public synchronized void methond() {
}
  1. 修饰静态方法: 锁的 SynchronizedDemo 类的对象
public synchronized static void method() {
}
  1. 修饰代码块: 明确指定锁哪个对象
  • 锁当前对象
public void method() {
synchronized (this) {
}
}
  • 锁类对象
public void method() {
synchronized (SynchronizedDemo.class) {
}
}

synchronized的锁机制

  1. 对象锁:可以将synchronized关键字直接应用于实例方法或实例代码块上。当一个线程进入被synchronized修饰的实例方法或实例代码块时,它会自动获取该对象的内置锁。只有当线程释放锁之后,其他线程才能进入同步块。
  2. 类锁:可以将synchronized关键字应用于静态方法或类代码块上。当一个线程进入被synchronized修饰的静态方法或类代码块时,它会自动获取该类的Class对象的内置锁。类锁是属于整个类的,对于同一个类的不同实例,他们共享同一个类锁。
  3. 锁对象:可以使用synchronized关键字加锁指定的对象。通过指定一个对象作为锁,多个线程可以根据这个对象来实现同步。当一个线程进入synchronized代码块时,它会尝试获取指定对象的内置锁,只有当线程释放锁之后,其他线程才能获得锁并执行同步代码。

常见锁策略

乐观锁与悲观锁

悲观锁是在数据被使用前加锁,防止数据被其他线程修改。

乐观锁则是在更新数据时检查数据是否被其他线程修改过,如果没有则更新成功,否则返回失败。

Synchronized 初始使用乐观锁策略,当发现锁竞争比较频繁的时候, 就会自动切换成悲观锁策略。

重量级锁与轻量级锁

轻量级锁是一种优化的锁,它在CAS操作时使用CPU的自旋机制,如果自旋成功则获取到锁,否则进入睡眠状态。

重量级锁是一种传统的锁,它依赖于操作系统的MutexLock(互斥锁)来实现,当有多个线程竞争同一个锁时,会阻塞其他线程等待释放。

公平锁与非公平锁

假设有A,B,C三个线程依次进行同一把锁的获取,线程A获取成功了,线程B与C获取失败。

等待线程A释放锁后,线程B与C,如何获取锁

公平锁策略: 遵守 “先来后到”。B 比 C 先来的。当 A 释放锁的之后,B 就能先于 C 获取到锁。

非公平锁策略:不遵守 “先来后到”。B 和 C 都有可能获取到锁。

synchronized 是非公平锁

可重入锁与不可重入锁

可重入锁的意思就是允许同一个线程多次获取同一把锁。

Java里只要以Reentrant开头命名的锁都是可重入锁,而且JDK提供的所有现成的Lock实现类,包括synchronized关键字锁都是可重入的。

可以理解为一个线程没有释放锁,然后又尝试再次加锁。

按照之前对锁的理解就是,锁没有释放,进行再次加锁就会进行阻塞,直到第一次的锁被释放,才能获取到第二个锁,但释放第一个锁也由该线程来进行,结果现在这个线程啥都干不了,也就只能形成死锁了。

这样的锁称其为不可重入锁。

synchronized 是可重入锁

自旋锁

为防止线程在抢锁失败后进入阻塞状态,经过很久才能再次被调度的情况。

while (!locked.compareAndSet(false, true)) {
            // 不断循环直到获取到锁
        }

如果获取锁失败,立即再尝试获取锁, 无限循环,直到获取到锁为止。 第一次获取锁失败, 第二次的尝试会在极短的时间内到来。

缺点:如果锁被其他线程持有的时间比较久, 那么就会持续的消耗 CPU 资源。

synchronized 中的轻量级锁策略大概率就是通过自旋锁的方式实现的

读写锁

一个线程对于数据的访问, 主要存在两种操作: 读数据 和 写数据.

  • 两个线程都只是读一个数据, 此时并没有线程安全问题. 直接并发的读取即可.
  • 两个线程都要写一个数据, 有线程安全问题.
  • 一个线程读另外一个线程写, 也有线程安全问题.
    读写锁就是把读操作和写操作区分对待。 Java 标准库提供了ReentrantReadWriteLock 类,实现了读写锁。
  • ReentrantReadWriteLock.ReadLock 类表示一个读锁。这个对象提供了 lock / unlock 方法进行加锁解锁。
  • ReentrantReadWriteLock.WriteLock 类表示一个写锁。 这个对象也提供了 lock / unlock 方法进行加锁解锁

读加锁和读加锁之间, 不互斥.

写加锁和写加锁之间, 互斥.

读加锁和写加锁之间, 互斥

Synchronized 不是读写锁

想了解更多也可以看我的笔记专栏哈哈


相关文章
|
13天前
|
存储 Java 开发者
什么是java的Compact Strings特性,什么情况下使用
Java 9引入了紧凑字符串特性,优化了字符串的内存使用。它通过将字符串从UTF-16字符数组改为字节数组存储,根据内容选择更节省内存的编码方式,通常能节省10%至15%的内存。
|
22天前
|
存储 Java 数据挖掘
Java 8 新特性之 Stream API:函数式编程风格的数据处理范式
Java 8 引入的 Stream API 提供了一种新的数据处理方式,支持函数式编程风格,能够高效、简洁地处理集合数据,实现过滤、映射、聚合等操作。
39 6
|
18天前
|
Java 程序员
深入理解Java异常处理机制
Java的异常处理是编程中的一块基石,它不仅保障了代码的健壮性,还提升了程序的可读性和可维护性。本文将深入浅出地探讨Java异常处理的核心概念、分类、处理策略以及最佳实践,旨在帮助读者建立正确的异常处理观念,提升编程效率和质量。
|
19天前
|
Java 开发者 UED
深入探索Java中的异常处理机制##
本文将带你深入了解Java语言中的异常处理机制,包括异常的分类、异常的捕获与处理、自定义异常的创建以及最佳实践。通过具体实例和代码演示,帮助你更好地理解和运用Java中的异常处理,提高程序的健壮性和可维护性。 ##
43 2
|
19天前
|
Java 开发者
Java中的异常处理机制深度剖析####
本文深入探讨了Java语言中异常处理的重要性、核心机制及其在实际编程中的应用策略,旨在帮助开发者更有效地编写健壮的代码。通过实例分析,揭示了try-catch-finally结构的最佳实践,以及如何利用自定义异常提升程序的可读性和维护性。此外,还简要介绍了Java 7引入的多异常捕获特性,为读者提供了一个全面而实用的异常处理指南。 ####
39 2
|
22天前
|
开发框架 安全 Java
Java 反射机制:动态编程的强大利器
Java反射机制允许程序在运行时检查类、接口、字段和方法的信息,并能操作对象。它提供了一种动态编程的方式,使得代码更加灵活,能够适应未知的或变化的需求,是开发框架和库的重要工具。
36 2
|
17天前
|
Java API 开发者
深入理解Java中的异常处理机制
本文探讨了Java编程语言中异常处理的核心概念,包括异常类型、异常捕获与抛出、以及最佳实践。通过分析常见的异常场景和处理策略,旨在帮助开发者更好地理解和运用异常处理机制,提高代码的健壮性和可维护性。文章不仅涵盖了基本的try-catch结构,还深入讨论了自定义异常的创建与使用,以及finally块的重要性和应用。此外,还将介绍一些高级技巧,如多异常捕获和嵌套异常处理,为读者提供全面的技术指导。
68 0
|
6月前
|
安全 Java 程序员
Java并发编程中的锁机制与优化策略
【6月更文挑战第17天】在Java并发编程的世界中,锁是维护数据一致性和线程安全的关键。本文将深入探讨Java中的锁机制,包括内置锁、显式锁以及读写锁的原理和使用场景。我们将通过实际案例分析锁的优化策略,如减少锁粒度、使用并发容器以及避免死锁的技巧,旨在帮助开发者提升多线程程序的性能和可靠性。
|
5月前
|
存储 缓存 Java
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
56 0
|
7月前
|
安全 Java 编译器
Java并发编程中的锁优化策略
【5月更文挑战第30天】 在多线程环境下,确保数据的一致性和程序的正确性是至关重要的。Java提供了多种锁机制来管理并发,但不当使用可能导致性能瓶颈或死锁。本文将深入探讨Java中锁的优化策略,包括锁粗化、锁消除、锁降级以及读写锁的使用,以提升并发程序的性能和响应能力。通过实例分析,我们将了解如何在不同场景下选择和应用这些策略,从而在保证线程安全的同时,最小化锁带来的开销。