LeetCode 周赛上分之旅 #47 前后缀分解结合单调栈的贡献问题

简介: 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 47 篇文章,往期回顾请移步到文章末尾~

LeetCode 周赛 364

T1. 最大二进制奇数(Easy)

  • 标签:贪心

T2. 美丽塔 I(Medium)

  • 标签:枚举、前后缀分解、单调栈

T3. 美丽塔 II(Medium)

  • 标签:枚举、前后缀分解、单调栈

T4. 统计树中的合法路径数目(Hard)

  • 标签:DFS、质数


T1. 最大二进制奇数(Easy)

https://leetcode.cn/problems/maximum-odd-binary-number/description/

题解(模拟)

简单模拟题,先计算 $1$ 的个数,将其中一个 $1$ 置于最低位,其它 $1$ 置于最高位:

```Kotlin []
class Solution {
fun maximumOddBinaryNumber(s: String): String {
val cnt = s.count { it == '1' }
return StringBuilder().apply {
repeat(cnt - 1) {
append("1")
}
repeat(s.length - cnt) {
append("0")
}
append("1")
}.toString()
}
}


```Python []
class Solution:
    def maximumOddBinaryNumber(self, s: str) -> str:
        n, cnt = len(s), s.count("1")
        return "1" * (cnt - 1) + "0" * (n - cnt) + "1"

```C++ []
class Solution {
public:
string maximumOddBinaryNumber(string s) {
int n = s.length();
int cnt = 0;
for (auto& e : s) {
if (e == '1') cnt++;
}
string ret;
for (int i = 0; i < cnt - 1; i++) {
ret.push_back('1');
}
for (int i = 0; i < n - cnt; i++) {
ret.push_back('0');
}
ret.push_back('1');
return ret;
}
};


**复杂度分析:**

*   时间复杂度:$O(n)$ 线性遍历;
*   空间复杂度:$O(1)$ 不考虑结果字符串。

***

## T2. 美丽塔 I(Medium)

    https://leetcode.cn/problems/beautiful-towers-i/description/

同 T3. 美丽塔 I

***

## T3. 美丽塔 II(Medium)

    https://leetcode.cn/problems/beautiful-towers-ii/description/

### 问题分析

**初步分析:**

*   **问题目标:** 构造满足条件的方案,使得数组呈现山状数组,返回元素和;
*   **方案条件:** 从数组的最大值向左侧为递减,向右侧也为递减。

**思考实现:**

*   在 [T2. 美丽塔 I(Medium)](https://leetcode.cn/problems/beautiful-towers-i/description/) 中的数据量只有 $1000$,我们可以枚举以每个点作为山峰(数组最大值)的方案,从山顶依次向两侧递减,使得当前位置不高于前一个位置,整体的时间复杂度是 $O(n^2)$;
*   在 [T3. 美丽塔 II(Medium)](https://leetcode.cn/problems/count-valid-paths-in-a-tree/description/) 中数据量有 $10^5$,我们需要思考低于平方时间复杂度的方法。

**思考优化:**

以示例 `[6,5,3,9,2,7]` 为例,我们观察以 $3$ 和 $9$ 作为山顶的两个方案:

```bash
以 3 作为山顶:
3 3 |3 3| 2 2

以 9 作为山顶
3 3 |3 9| 2 2

可以发现:以 $3$ 作为山顶的左侧与以 $9$ 为山顶的右侧在两个方案之间是可以复用的,至此发现解决方法:我们可以分别预处理出以每个节点作为山顶的前缀和后缀的和:

  • $pre[i]$ 表示以 $maxHeights[i]$ 作为山顶时左侧段的前缀和;
  • $suf[i]$ 表示以 $maxHeights[i]$ 作为山顶时右侧段的后缀和。

那么,最佳方案就是 $pre[i] + suf[i] - maxHeight[i]$ 的最大值。 现在,最后的问题是如何以均摊 $O(1)$ 的时间复杂度计算出每个元素前后缀的和?

思考递推关系:

继续以示例 [6,5,3,9,2,7] 为例:

  • 以 $6$ 为山顶,前缀为 $[6]$
  • 以 $5$ 为山顶,需要保证左侧元素不大于 $5$,因此找到 $6$ 并修改为 $5$,前缀为 $[5, 5]$
  • 以 $3$ 为山顶,需要保证左侧元素不大于 $3$,因此找到两个 $5$ 并修改为 $3$,前缀为 $[3, 3, 3]$
  • 以 $9$ 为山顶,需要保证左侧元素不大于 $9$,不需要修改,前缀为 $[3, 3, 3, 9]$
  • 以 $2$ 为山顶,需要保证左侧元素不大于 $2$,修改后为 $[2, 2, 2, 2, 2]$
  • 以 $7$ 为山顶,需要保证左侧元素不大于 $7$,不需要修改,前缀为 $[2, 2, 2, 2, 2, 7]$

提高抽象程度:

观察以上步骤,问题的关键在于修改操作:由于数组是递增的,因此修改的步骤就是在「寻找小于等于当前元素 $x$ 的上一个元素」,再将中间的元素削减为 $x$。「寻找上一个更小元素」,这是单调栈的典型场景。

题解一(枚举)

枚举以每个元素作为山顶的方案:

```Kotlin []
class Solution {
fun maximumSumOfHeights(maxHeights: List): Long {
val n = maxHeights.size
var ret = 0L
for (i in maxHeights.indices) {
var curSum = maxHeights[i].toLong()
var pre = maxHeights[i]
for (j in i - 1 downTo 0) {
pre = min(pre, maxHeights[j])
curSum += pre
}
pre = maxHeights[i]
for (j in i + 1 ..< n) {
pre = min(pre, maxHeights[j])
curSum += pre
}
ret = max(ret, curSum)
}
return ret
}
}


```Python []
class Solution:
    def maximumSumOfHeights(self, maxHeights: List[int]) -> int:
        n, ret = len(maxHeights), 0
        for i in range(n):
            curSum = maxHeights[i]
            pre = maxHeights[i]
            for j in range(i + 1, n):
                pre = min(pre, maxHeights[j])
                curSum += pre
            pre = maxHeights[i]
            for j in range(i - 1, -1, -1):
                pre = min(pre, maxHeights[j])
                curSum += pre
            ret = max(ret, curSum)
        return ret

```C++ []
class Solution {
public:
long long maximumSumOfHeights(vector& maxHeights) {
int n = maxHeights.size();
long long ret = 0;
for (int i = 0; i < n; i++) {
long long curSum = maxHeights[i];
int pre = maxHeights[i];
for (int j = i + 1; j < n; j++) {
pre = min(pre, maxHeights[j]);
curSum += pre;
}
pre = maxHeights[i];
for (int j = i - 1; j >= 0; j--) {
pre = min(pre, maxHeights[j]);
curSum += pre;
}
ret = max(ret, curSum);
}
return ret;
}
};


**复杂度分析:**

*   时间复杂度:$O(n^2)$ 每个方案的时间复杂度是 $O(n)$,一共有 $n$ 种方案;
*   空间复杂度:$O(1)$ 仅使用常量级别空间。

### 题解二(前后缀分解 + 单调栈)

使用单点栈维护前后缀数组,为了便于边界计算,我们构造长为 $n + 1$ 的数组。以示例 `[6,5,3,9,2,7]` 为例:

```bash
0, 5, 6, 10, 4, 5
13, 8, 6, 2, 1, 0

```Kotlin []
class Solution {
fun maximumSumOfHeights(maxHeights: List): Long {
val n = maxHeights.size
val suf = LongArray(n + 1)
val pre = LongArray(n + 1)
// 单调栈求前缀
val stack = java.util.ArrayDeque()
for (i in 0 until n) {
// 弹出栈顶
while (!stack.isEmpty() && maxHeights[stack.peek()] > maxHeights[i]) {
stack.pop()
}
val j = if (stack.isEmpty()) -1 else stack.peek()
pre[i + 1] = pre[j + 1] + 1L (i - j) maxHeights[i]
stack.push(i)
}
// 单调栈求后缀
stack.clear()
for (i in n - 1 downTo 0) {
// 弹出栈顶
while (!stack.isEmpty() && maxHeights[stack.peek()] > maxHeights[i]) {
stack.pop()
}
val j = if (stack.isEmpty()) n else stack.peek()
suf[i] = suf[j] + 1L (j - i) maxHeights[i]
stack.push(i)
}
// 合并
var ret = 0L
for (i in 0 until n) {
ret = max(ret, pre[i + 1] + suf[i] - maxHeights[i])
}
return ret
}
}


```Python []
class Solution:
    def maximumSumOfHeights(self, maxHeights: List[int]) -> int:
        n = len(maxHeights)
        suf = [0] * (n + 1)
        pre = [0] * (n + 1)
        stack = []
        # 单调栈求前缀
        for i in range(n):
            # 弹出栈顶
            while stack and maxHeights[stack[-1]] > maxHeights[i]:
                stack.pop()
            j = stack[-1] if stack else -1
            pre[i + 1] = pre[j + 1] + (i - j) * maxHeights[i]
            stack.append(i)
        # 单调栈求后缀
        stack = []
        for i in range(n - 1, -1, -1):
            # 弹出栈顶
            while stack and maxHeights[stack[-1]] > maxHeights[i]:
                stack.pop()
            j = stack[-1] if stack else n
            suf[i] = suf[j] + (j - i) * maxHeights[i]
            stack.append(i)
        # 合并
        ret = 0
        for i in range(n):
            ret = max(ret, pre[i + 1] + suf[i] - maxHeights[i])

        return ret

```C++ []
class Solution {
public:
long long maximumSumOfHeights(vector& maxHeights) {
int n = maxHeights.size();
vector suf(n + 1, 0);
vector pre(n + 1, 0);
stack st;
// 单调栈求前缀
for (int i = 0; i < n; i++) {
// 弹出栈顶
while (!st.empty() && maxHeights[st.top()] > maxHeights[i]) {
st.pop();
}
int j = st.empty() ? -1 : st.top();
pre[i + 1] = pre[j + 1] + 1LL (i - j) maxHeights[i];
st.push(i);
}
// 单调栈求后缀
while (!st.empty()) st.pop();
for (int i = n - 1; i >= 0; i--) {
// 弹出栈顶
while (!st.empty() && maxHeights[st.top()] > maxHeights[i]) {
st.pop();
}
int j = st.empty() ? n : st.top();
suf[i] = suf[j] + 1LL (j - i) maxHeights[i];
st.push(i);
}
// 合并
long long ret = 0;
for (int i = 0; i < n; i++) {
ret = max(ret, pre[i + 1] + suf[i] - maxHeights[i]);
}
return ret;
}
};


**复杂度分析:**

*   时间复杂度:$O(n)$ 在一侧的计算中,每个元素最多如何和出栈 $1$ 次;
*   空间复杂度:$O(n)$ 前后缀数组空间。

***

## T4. 统计树中的合法路径数目(Hard)

```bash
https://leetcode.cn/problems/count-valid-paths-in-a-tree/description/

这道题似乎比 T3 还简单一些。

问题分析

初步分析:

  • 问题目标: 寻找满足条件的方案数;
  • 问题条件: 路径 $[a, b]$ 上质数的数目有且仅有 $1$;
  • 问题要素: 路径和 - 表示路径上质数的数目。

思考实现:

  • 子问题: 对于以根节点 x 的原问题,可以分为 3 种情况:
    • 左子树可以构造的方案数
    • 右子树可以构造的方案数
    • 如果根节点为质数:「从根到子树节点的路径和为 $0$ 的数目」与「从根到其它子树节点的路径和为 $0$ 的数目」的乘积(乘法原理)

题解(DFS)

构造 DFS 函数,子树的 DFS 返回值为两个值:

  • $cnt0$:到子树节点和为 $0$ 的路径数;
  • $cnt1$:到子树节点和为 $1$ 的路径数;

返回结果时:

  • 如果根节点为质数,那么只能与 $cnt0$ 个路径和为 $1$ 的路径;
  • 如果根节点为非质数,那么 $cnt0$ 个路径可以组成和为 $0$ 的路径,同理 $cnt1$ 个路径可以组成和为 $1$ 的路径。

在子树的计算过程中还会构造结果:

由于题目说明 $[a, b]$ 与 $[b, a]$ 是相同路径,我们可以记录当前子树左侧已经计算过的 $cnt0$ 和 $cnt1$ 的累加和,再与当前子树的 $cnt0$ 与 $cnt1$ 做乘法:

$ret += cnt0 cnt[1] + cnt1 cnt[0]$

```Kotlin []
class Solution {

companion object {
    val U = 100000
    val primes = LinkedList<Int>()
    val isPrime = BooleanArray(U + 1) { true }
    init {
        isPrime[1] = false
        for (i in 2 .. U) {
            if (isPrime[i]) primes.add(i)
            for (e in primes) {
                if (i * e > U) break
                isPrime[i * e] = false
                if (i % e == 0) break
            }
        }
    }
}

fun countPaths(n: Int, edges: Array<IntArray>): Long {
    val graph = Array(n + 1) { LinkedList<Int>() }
    for ((from, to) in edges) {
        graph[from].add(to)
        graph[to].add(from)
    }

    var ret = 0L

    // return 0 和 1 的数量
    fun dfs(i: Int, pre: Int): IntArray {
        // 终止条件
        var cnt = IntArray(2)
        if (isPrime[i]) {
            cnt[1] = 1
        } else {
            cnt[0] = 1
        }
        // 递归
        for (to in graph[i]) {
            if (to == pre) continue // 返祖边
            val (cnt0, cnt1) = dfs(to, i)
            // 记录方案
            ret += cnt0 * cnt[1] + cnt1 * cnt[0]
            // 记录影响
            if (isPrime[i]) {
                cnt[1] += cnt0
            } else {
                cnt[0] += cnt0
                cnt[1] += cnt1
            }
        }
        return cnt
    }
    dfs(1, -1) // 随机选择根节点
    return ret
}

}


```Python []
U = 100000
primes = deque()
isPrime = [True] * (U + 1)

isPrime[1] = False
for i in range(2, U + 1):
    if isPrime[i]: primes.append(i)
    for e in primes:
        if i * e > U: break
        isPrime[i * e] = False
        if i % e == 0: break

class Solution:

    def countPaths(self, n, edges):
        graph = defaultdict(list)
        for u, v in edges:
            graph[u].append(v)
            graph[v].append(u)

        ret = 0

        def dfs(i, pre):
            nonlocal ret # 修改外部变量
            cnt = [0, 0]
            # 终止条件
            if isPrime[i]:
                cnt[1] = 1
            else:
                cnt[0] = 1
            for to in graph[i]:
                if to == pre: continue # 返祖边
                cnt0, cnt1 = dfs(to, i)
                # 记录方案
                ret += cnt0 * cnt[1] + cnt1 * cnt[0]
                # 记录影响
                if isPrime[i]:
                    cnt[1] += cnt0
                else:
                    cnt[0] += cnt0
                    cnt[1] += cnt1
            return cnt

        dfs(1, -1) # 随机选择根节点
        return ret

```C++ []
const int U = 100000;
list primes;
bool isPrime[U + 1];
bool inited = false;

void init() {
if (inited) return;
inited = true;
memset(isPrime, true, sizeof(isPrime));
isPrime[1] = false;
for (int i = 2; i <= U; ++i) {
if (isPrime[i]) primes.push_back(i);
for (auto e : primes) {
if (i e > U) break;
isPrime[i
e] = false;
if (i % e == 0) break;
}
}
}

class Solution {
public:
long long countPaths(int n, vector>& edges) {
init();
vector> graph(n + 1);
for (const auto& edge : edges) {
int from = edge[0];
int to = edge[1];
graph[from].push_back(to);
graph[to].push_back(from);
}

    long long ret = 0;

    // return 0 和 1 的数量
    function<vector<int>(int, int)> dfs = [&](int i, int pre) -> vector<int> {
        // 终止条件
        vector<int> cnt(2, 0);
        if (isPrime[i]) {
            cnt[1] = 1;
        } else {
            cnt[0] = 1;
        }
        // 递归
        for (auto to : graph[i]) {
            if (to == pre) continue; // 返祖边
            vector<int> subCnt = dfs(to, i);
            int cnt0 = subCnt[0];
            int cnt1 = subCnt[1];
            // 记录方案
            ret += cnt0 * cnt[1] + cnt1 * cnt[0];
            // 记录影响
            if (isPrime[i]) {
                cnt[1] += cnt0;
            } else {
                cnt[0] += cnt0;
                cnt[1] += cnt1;
            }
        }
        return cnt;
    };
    dfs(1, -1); // 随机选择根节点
    return ret;
}

};


**复杂度分析:**

*   时间复杂度:预处理时间为 $O(U)$,建图时间 和 DFS 时间为 $O(n)$;
*   空间复杂度:预处理空间为 $O(U)$,模拟空间为 $O(n)$。

### 枚举质数

[OI - 素数筛法](https://oi-wiki.org/math/number-theory/sieve/)

> 枚举法:枚举 $[2, n]$ ,判断它是不是质数,整体时间复杂度是 $O(n\sqrt{n})$

```kotlin
// 暴力求质数
fun getPrimes(max: Int): IntArray {
    val primes = LinkedList<Int>()
    for (num in 2..max) {
        if (isPrime(num)) primes.add(num)
    }
    return primes.toIntArray()
}

// 质数判断
fun isPrime(num: Int): Boolean {
    var x = 2
    while (x * x <= num) {
        if (num % x == 0) return false
        x++
    }
    return true
}

Eratosthenes 埃氏筛:如果 $x$ 是质数,那么 $x$ 的整数倍 $2x$、$3x$ 一定不是质数。我们设 isPrime[i] 表示 $i$ 是否为质数。从小开始遍历,如果 $i$ 是质数,则同时将所有倍数标记为合数,整体时间复杂度是 $O(nlgn)$

为什么要从 $x^2$, $2x^2$ 开始标记,而不是 $2x$, $3x$ 开始标记,因为 $2x$, $3x$ 已经被小于 $x$ 的质数标记过。

// 埃氏筛求质数
val primes = LinkedList<Int>()
val isPrime = BooleanArray(U + 1) { true }
for (i in 2..U) {
    // 检查是否为质数,这里不需要调用 isPrime() 函数判断是否质数,因为它没被小于它的数标记过,那么一定不是合数
    if (!isPrime[i]) continue
    primes.add(i)
    // 标记
    var x = i * i
    while (x <= U) {
        isPrime[x] = false
        x += i
    }
}

Euler 欧氏线性筛:尽管我们从 $x^2$ 开始标记来减少重复标记,但埃氏筛还是会重复标记合数。为了避免重复标记,标记 $x$ 与 “小于等于 $x$ 的最小质因子的质数” 的乘积为合数,保证每个合数只被标记最小的质因子标记,整体时间复杂度是 $O(n)$

// 线性筛求质数
val primes = LinkedList<Int>()
val isPrime = BooleanArray(U + 1) { true }
for (i in 2..U) {
    // 检查是否为质数,这里不需要调用 isPrime() 函数判断是否质数,因为它没被小于它的数标记过,那么一定不是合数
    if (isPrime[i]) {
        primes.add(i)
    }
    // 标记
    for (e in primes) {
        if (i * e > U) break
        isPrime[i * e] = false
        if (i % e == 0) break
    }
}

推荐阅读

LeetCode 上分之旅系列往期回顾:

⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~

目录
相关文章
|
6月前
|
存储 算法 测试技术
力扣经典150题第五十四题:最小栈
力扣经典150题第五十四题:最小栈
48 0
|
7月前
|
存储 算法 索引
力扣每日一题 6/24 模拟 数组 单调栈
力扣每日一题 6/24 模拟 数组 单调栈
45 0
|
3月前
【LeetCode 24】225.用队列实现栈
【LeetCode 24】225.用队列实现栈
19 0
|
3月前
|
算法
【LeetCode 23】232.用栈实现队列
【LeetCode 23】232.用栈实现队列
28 0
|
5月前
|
Python
【Leetcode刷题Python】946. 验证栈序列
LeetCode题目“946. 验证栈序列”的Python解决方案,通过模拟栈的压入和弹出操作来验证给定的两个序列是否能通过合法的栈操作得到。
37 6
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 30. 包含min函数的栈
本文提供了实现一个包含min函数的栈的Python代码,确保min、push和pop操作的时间复杂度为O(1)。
37 4
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 09. 用两个栈实现队列
使用两个栈实现队列的Python解决方案,包括初始化两个栈、实现在队列尾部添加整数的appendTail方法和在队列头部删除整数的deleteHead方法,以及相应的示例操作。
44 2
|
5月前
|
Python
【Leetcode刷题Python】232. 用栈实现队列
如何使用Python语言通过两个栈来实现队列的所有基本操作,包括入队(push)、出队(pop)、查看队首元素(peek)和判断队列是否为空(empty),并提供了相应的代码实现。
25 0
|
7月前
|
存储 算法 Python
二刷力扣--栈和队列
二刷力扣--栈和队列
|
7月前
|
存储 算法 数据可视化
力扣155题最全解法:如何实现支持常数时间获取最小值的最小栈(附详细图解和复杂度分析)
力扣155题最全解法:如何实现支持常数时间获取最小值的最小栈(附详细图解和复杂度分析)