由浅入深Dubbo网络通信深入解析 2

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 由浅入深Dubbo网络通信深入解析

4 提供方返回调用结果

服务提供方调用指定服务后,会将调用结果封装到 Response 对象中,并将该对象返回给服务消费方。服务提供方也是通过 NettyChannel 的 send 方法将 Response 对象返回,这里就不在重复分析了。本节我们仅需关注 Response 对象的编码过程即可

public class ExchangeCodec extends TelnetCodec {
    public void encode(Channel channel, ChannelBuffer buffer, Object msg) throws IOException {
        if (msg instanceof Request) {
            encodeRequest(channel, buffer, (Request) msg);
        } else if (msg instanceof Response) {
            // 对响应对象进行编码
            encodeResponse(channel, buffer, (Response) msg);
        } else {
            super.encode(channel, buffer, msg);
        }
    }
    protected void encodeResponse(Channel channel, ChannelBuffer buffer, Response res) throws IOException {
        int savedWriteIndex = buffer.writerIndex();
        try {
            Serialization serialization = getSerialization(channel);
            // 创建消息头字节数组
            byte[] header = new byte[HEADER_LENGTH];
            // 设置魔数
            Bytes.short2bytes(MAGIC, header);
            // 设置序列化器编号
            header[2] = serialization.getContentTypeId();
            if (res.isHeartbeat()) header[2] |= FLAG_EVENT;
            // 获取响应状态
            byte status = res.getStatus();
            // 设置响应状态
            header[3] = status;
            // 设置请求编号
            Bytes.long2bytes(res.getId(), header, 4);
            // 更新 writerIndex,为消息头预留 16 个字节的空间
            buffer.writerIndex(savedWriteIndex + HEADER_LENGTH);
            ChannelBufferOutputStream bos = new ChannelBufferOutputStream(buffer);
            ObjectOutput out = serialization.serialize(channel.getUrl(), bos);
            if (status == Response.OK) {
                if (res.isHeartbeat()) {
                    // 对心跳响应结果进行序列化,已废弃
                    encodeHeartbeatData(channel, out, res.getResult());
                } else {
                    // 对调用结果进行序列化
                    encodeResponseData(channel, out, res.getResult(), res.getVersion());
                }
            } else { 
                // 对错误信息进行序列化
                out.writeUTF(res.getErrorMessage())
            };
            out.flushBuffer();
            if (out instanceof Cleanable) {
                ((Cleanable) out).cleanup();
            }
            bos.flush();
            bos.close();
            // 获取写入的字节数,也就是消息体长度
            int len = bos.writtenBytes();
            checkPayload(channel, len);
            // 将消息体长度写入到消息头中
            Bytes.int2bytes(len, header, 12);
            // 将 buffer 指针移动到 savedWriteIndex,为写消息头做准备
            buffer.writerIndex(savedWriteIndex);
            // 从 savedWriteIndex 下标处写入消息头
            buffer.writeBytes(header); 
            // 设置新的 writerIndex,writerIndex = 原写下标 + 消息头长度 + 消息体长度
            buffer.writerIndex(savedWriteIndex + HEADER_LENGTH + len);
        } catch (Throwable t) {
            // 异常处理逻辑不是很难理解,但是代码略多,这里忽略了
        }
    }
}
public class DubboCodec extends ExchangeCodec implements Codec2 {
    protected void encodeResponseData(Channel channel, ObjectOutput out, Object data, String version) throws IOException {
        Result result = (Result) data;
        // 检测当前协议版本是否支持带有 attachment 集合的 Response 对象
        boolean attach = Version.isSupportResponseAttachment(version);
        Throwable th = result.getException();
        // 异常信息为空
        if (th == null) {
            Object ret = result.getValue();
            // 调用结果为空
            if (ret == null) {
                // 序列化响应类型
                out.writeByte(attach ? RESPONSE_NULL_VALUE_WITH_ATTACHMENTS : RESPONSE_NULL_VALUE);
            } 
            // 调用结果非空
            else {
                // 序列化响应类型
                out.writeByte(attach ? RESPONSE_VALUE_WITH_ATTACHMENTS : RESPONSE_VALUE);
                // 序列化调用结果
                out.writeObject(ret);
            }
        } 
        // 异常信息非空
        else {
            // 序列化响应类型
            out.writeByte(attach ? RESPONSE_WITH_EXCEPTION_WITH_ATTACHMENTS : RESPONSE_WITH_EXCEPTION);
            // 序列化异常对象
            out.writeObject(th);
        }
        if (attach) {
            // 记录 Dubbo 协议版本
            result.getAttachments().put(Constants.DUBBO_VERSION_KEY, Version.getProtocolVersion());
            // 序列化 attachments 集合
            out.writeObject(result.getAttachments());
        }
    }
}

以上就是 Response 对象编码的过程,和前面分析的 Request 对象编码过程很相似。如果大家能看 Request 对象的编码逻辑,那么这里的 Response 对象的编码逻辑也不难理解,就不多说了。接下来我们再来分析双向通信的最后一环 —— 服务消费方接收调用结果。


5 消费方接收调用结果

服务消费方在收到响应数据后,首先要做的事情是对响应数据进行解码,得到 Response 对象。然后再将该对象传递给下一个入站处理器,这个入站处理器就是 NettyHandler。接下来 NettyHandler 会将这个对象继续向下传递,最后 AllChannelHandler 的 received 方法会收到这个对象,并将这个对象派发到线程池中。这个过程和服务提供方接收请求的过程是一样的,因此这里就不重复分析了


(1)响应数据解码


响应数据解码逻辑主要的逻辑封装在 DubboCodec 中,我们直接分析这个类的代码。如下:

public class DubboCodec extends ExchangeCodec implements Codec2 {
    @Override
    protected Object decodeBody(Channel channel, InputStream is, byte[] header) throws IOException {
        byte flag = header[2], proto = (byte) (flag & SERIALIZATION_MASK);
        Serialization s = CodecSupport.getSerialization(channel.getUrl(), proto);
        // 获取请求编号
        long id = Bytes.bytes2long(header, 4);
        // 检测消息类型,若下面的条件成立,表明消息类型为 Response
        if ((flag & FLAG_REQUEST) == 0) {
            // 创建 Response 对象
            Response res = new Response(id);
            // 检测事件标志位
            if ((flag & FLAG_EVENT) != 0) {
                // 设置心跳事件
                res.setEvent(Response.HEARTBEAT_EVENT);
            }
            // 获取响应状态
            byte status = header[3];
            // 设置响应状态
            res.setStatus(status);
            // 如果响应状态为 OK,表明调用过程正常
            if (status == Response.OK) {
                try {
                    Object data;
                    if (res.isHeartbeat()) {
                        // 反序列化心跳数据,已废弃
                        data = decodeHeartbeatData(channel, deserialize(s, channel.getUrl(), is));
                    } else if (res.isEvent()) {
                        // 反序列化事件数据
                        data = decodeEventData(channel, deserialize(s, channel.getUrl(), is));
                    } else {
                        DecodeableRpcResult result;
                        // 根据 url 参数决定是否在 IO 线程上执行解码逻辑
                        if (channel.getUrl().getParameter(
                                Constants.DECODE_IN_IO_THREAD_KEY,
                                Constants.DEFAULT_DECODE_IN_IO_THREAD)) {
                            // 创建 DecodeableRpcResult 对象
                            result = new DecodeableRpcResult(channel, res, is,
                                    (Invocation) getRequestData(id), proto);
                            // 进行后续的解码工作
                            result.decode();
                        } else {
                            // 创建 DecodeableRpcResult 对象
                            result = new DecodeableRpcResult(channel, res,
                                    new UnsafeByteArrayInputStream(readMessageData(is)),
                                    (Invocation) getRequestData(id), proto);
                        }
                        data = result;
                    }
                    // 设置 DecodeableRpcResult 对象到 Response 对象中
                    res.setResult(data);
                } catch (Throwable t) {
                    // 解码过程中出现了错误,此时设置 CLIENT_ERROR 状态码到 Response 对象中
                    res.setStatus(Response.CLIENT_ERROR);
                    res.setErrorMessage(StringUtils.toString(t));
                }
            } 
            // 响应状态非 OK,表明调用过程出现了异常
            else {
                // 反序列化异常信息,并设置到 Response 对象中
                res.setErrorMessage(deserialize(s, channel.getUrl(), is).readUTF());
            }
            return res;
        } else {
            // 对请求数据进行解码,前面已分析过,此处忽略
        }
    }
}

以上就是响应数据的解码过程,上面逻辑看起来是不是似曾相识。对的,我们在前面章节分析过 DubboCodec 的 decodeBody 方法中关于请求数据的解码过程,该过程和响应数据的解码过程很相似。下面,我们继续分析调用结果的反序列化过程

public class DecodeableRpcResult extends AppResponse implements Codec, Decodeable {
    private static final Logger log = LoggerFactory.getLogger(DecodeableRpcResult.class);
    private Channel channel;
    private byte serializationType;
    private InputStream inputStream;
    private Response response;
    private Invocation invocation;
    private volatile boolean hasDecoded;
    public DecodeableRpcResult(Channel channel, Response response, InputStream is, Invocation invocation, byte id) {
        Assert.notNull(channel, "channel == null");
        Assert.notNull(response, "response == null");
        Assert.notNull(is, "inputStream == null");
        this.channel = channel;
        this.response = response;
        this.inputStream = is;
        this.invocation = invocation;
        this.serializationType = id;
    }
    @Override
    public void encode(Channel channel, OutputStream output, Object message) throws IOException {
        throw new UnsupportedOperationException();
    }
    @Override
    public Object decode(Channel channel, InputStream input) throws IOException {
        ObjectInput in = CodecSupport.getSerialization(channel.getUrl(), serializationType)
                .deserialize(channel.getUrl(), input);
        // 反序列化响应类型
        byte flag = in.readByte();
        switch (flag) {
            case DubboCodec.RESPONSE_NULL_VALUE:
                break;
            case DubboCodec.RESPONSE_VALUE:
                handleValue(in);
                break;
            case DubboCodec.RESPONSE_WITH_EXCEPTION:
                handleException(in);
                break;
                // 返回值为空,且携带了 attachments 集合
            case DubboCodec.RESPONSE_NULL_VALUE_WITH_ATTACHMENTS:
                handleAttachment(in);
                break;
                //返回值不为空,且携带了 attachments 集合
            case DubboCodec.RESPONSE_VALUE_WITH_ATTACHMENTS:
                handleValue(in);
                handleAttachment(in);
                break;
            // 异常对象不为空,且携带了 attachments 集合
            case DubboCodec.RESPONSE_WITH_EXCEPTION_WITH_ATTACHMENTS:
                handleException(in);
                handleAttachment(in);
                break;
            default:
                throw new IOException("Unknown result flag, expect '0' '1' '2' '3' '4' '5', but received: " + flag);
        }
        if (in instanceof Cleanable) {
            ((Cleanable) in).cleanup();
        }
        return this;
    }

正常调用下,线程会进入 RESPONSE_VALUE_WITH_ATTACHMENTS 分支中。然后线程会从 invocation 变量(大家探索一下 invocation 变量的由来)中获取返回值类型,接着对调用结果进行反序列化,并将序列化后的结果存储起来。最后对 attachments 集合进行反序列化,并存到指定字段中


(2)获取调用结果


解码完成后,解码结果Response会进入NettyClientHandler,调用路径如下:

NettyServerHandler#channelRead(ChannelHandlerContext, MessageEvent)
  —> AbstractPeer#received(Channel, Object)
    —> MultiMessageHandler#received(Channel, Object)
      —> HeartbeatHandler#received(Channel, Object)
        —> AllChannelHandler#received(Channel, Object)
          —> ExecutorService#execute(Runnable)    // 由线程池执行后续的调用逻辑 ChannelEventRunnable

跟服务提供者收到请求后的处理逻辑一样,接下来在ChannelEventRunnable中进行处理

最终在HeaderExchangeHandler.received中有处理响应结果的分支

public void received(Channel channel, Object message) throws RemotingException {
    channel.setAttribute(KEY_READ_TIMESTAMP, System.currentTimeMillis());
    final ExchangeChannel exchangeChannel = HeaderExchangeChannel.getOrAddChannel(channel);
    try {
        if (message instanceof Request) {
            // handle request. 处理请求
            Request request = (Request) message;
            if (request.isEvent()) {
                handlerEvent(channel, request);
            } else {
                if (request.isTwoWay()) {
                    /**
                         * 真正处理请求,重点来看
                         */
                    handleRequest(exchangeChannel, request);
                } else {
                    handler.received(exchangeChannel, request.getData());
                }
            }
        } else if (message instanceof Response) {
            /**
                 * 处理响应,重点来看
                 */
            handleResponse(channel, (Response) message);
        } else if (message instanceof String) {
            if (isClientSide(channel)) {
                Exception e = new Exception("Dubbo client can not supported string message: " + message + " in channel: " + channel + ", url: " + channel.getUrl());
                logger.error(e.getMessage(), e);
            } else {
                String echo = handler.telnet(channel, (String) message);
                if (echo != null && echo.length() > 0) {
                    channel.send(echo);
                }
            }
        } else {
            handler.received(exchangeChannel, message);
        }
    } finally {
        HeaderExchangeChannel.removeChannelIfDisconnected(channel);
    }
}
static void handleResponse(Channel channel, Response response) throws RemotingException {
    if (response != null && !response.isHeartbeat()) {
        DefaultFuture.received(channel, response);
    }
}

然后在DefaultFuture中继续处理

public static void received(Channel channel, Response response) {
    received(channel, response, false);
}
public static void received(Channel channel, Response response, boolean timeout) {
    try {
        /**
             * Map<Long, DefaultFuture> FUTURES
             */
        DefaultFuture future = FUTURES.remove(response.getId());
        if (future != null) {
            Timeout t = future.timeoutCheckTask;
            if (!timeout) {
                // decrease Time
                t.cancel();
            }
            future.doReceived(response);
        } else {
            logger.warn("The timeout response finally returned at "
                        + (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(new Date()))
                        + ", response " + response
                        + (channel == null ? "" : ", channel: " + channel.getLocalAddress()
                           + " -> " + channel.getRemoteAddress()));
        }
    } finally {
        CHANNELS.remove(response.getId());
    }
}
private void doReceived(Response res) {
    if (res == null) {
        throw new IllegalStateException("response cannot be null");
    }
    if (res.getStatus() == Response.OK) {
        /**
             * 通过`CompletableFuture#complete`方法来设置异步的返回结果
             *  CompletableFuture 是 jdk 提供的
             */
        this.complete(res.getResult());
    } else if (res.getStatus() == Response.CLIENT_TIMEOUT || res.getStatus() == Response.SERVER_TIMEOUT) {
        this.completeExceptionally(new TimeoutException(res.getStatus() == Response.SERVER_TIMEOUT, channel, res.getErrorMessage()));
    } else {
        this.completeExceptionally(new RemotingException(channel, res.getErrorMessage()));
    }
}

设置完结果,在哪里获取呢?这得追溯到消费方代理方法的执行,在InvokerInvocationHandler中

public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
        String methodName = method.getName();
        Class<?>[] parameterTypes = method.getParameterTypes();
        if (method.getDeclaringClass() == Object.class) {
            return method.invoke(invoker, args);
        }
        if ("toString".equals(methodName) && parameterTypes.length == 0) {
            return invoker.toString();
        }
        if ("hashCode".equals(methodName) && parameterTypes.length == 0) {
            return invoker.hashCode();
        }
        if ("equals".equals(methodName) && parameterTypes.length == 1) {
            return invoker.equals(args[0]);
        }
        /**
         * Invocation 是会话域,它持有调用过程中的变量,比如方法名,参数等
         * 将 method 和 args 封装到 RpcInvocation 中,并执行后续的调用
         *
         * invoker: MockClusterInvoker  内部封装了服务降级逻辑
         */
        return invoker.invoke(new RpcInvocation(method, args)).recreate();// recreate获取结果,在AsyncRpcResult中
    }
public Object recreate() throws Throwable {
    RpcInvocation rpcInvocation = (RpcInvocation) invocation;
    FutureAdapter future = new FutureAdapter(this);
    RpcContext.getContext().setFuture(future);
    if (InvokeMode.FUTURE == rpcInvocation.getInvokeMode()) {
        return future;
    }
    // return getAppResponse().recreate(); //原代码
    Result appResponse = getAppResponse();
    return appResponse.recreate();
}
public Result getAppResponse() {
    try {
        if (this.isDone()) {
            /**
                 * this= AsyncRpcResult extends AbstractResult extends CompletableFuture
                 获取到结果了
                 */
            return this.get();
        }
    } catch (Exception e) {
        // This should never happen;
        logger.error("Got exception when trying to fetch the underlying result from AsyncRpcResult.", e);
    }
    return new AppResponse();
}

6 异步转同步

Dubbo发送数据至服务方后,在通信层面是异步的,通信线程并不会等待结果数据返回。而我们在使用Dubbo进行RPC调用缺省就是同步的,这其中就涉及到了异步转同步的操作。

而在2.7.x版本中,这种自实现的异步转同步操作进行了修改。新的DefaultFuture继承了CompletableFuture,新的doReceived(Response res)方法如下:

private void doReceived(Response res) {
    if (res == null) {
        throw new IllegalStateException("response cannot be null");
    }
    if (res.getStatus() == Response.OK) {
        this.complete(res.getResult());
    } else if (res.getStatus() == Response.CLIENT_TIMEOUT || res.getStatus() == Response.SERVER_TIMEOUT) {
        this.completeExceptionally(new TimeoutException(res.getStatus() == Response.SERVER_TIMEOUT, channel, res.getErrorMessage()));
    } else {
        this.completeExceptionally(new RemotingException(channel, res.getErrorMessage()));
    }
}

通过CompletableFuture#complete方法来设置异步的返回结果,且删除旧的get()方法,使用CompletableFuture#get()方法:

public T get() throws InterruptedException, ExecutionException {
    Object r;
    return reportGet((r = result) == null ? waitingGet(true) : r);
}

使用CompletableFuture完成了异步转同步的操作。

7 异步多线程数据一致

这里简单说明一下。一般情况下,服务消费方会并发调用多个服务,每个用户线程发送请求后,会调用 get 方法进行等待。 一段时间后,服务消费方的线程池会收到多个响应对象。这个时候要考虑一个问题,如何将每个响应对象传递给相应的 Future 对象,不出错。答案是通过调用编号。Future 被创建时,会要求传入一个 Request 对象。此时 DefaultFuture 可从 Request 对象中获取调用编号,并将 <调用编号, DefaultFuture 对象> 映射关系存入到静态 Map 中,即 FUTURES。线程池中的线程在收到 Response 对象后,会根据 Response 对象中的调用编号到 FUTURES 集合中取出相应的 DefaultFuture 对象,然后再将 Response 对象设置到 DefaultFuture 对象中。这样用户线程即可从 DefaultFuture 对象中获取调用结果了。整个过程大致如下图:


image.png

private DefaultFuture(Channel channel, Request request, int timeout) {
    this.channel = channel;
    this.request = request;
    this.id = request.getId();
    this.timeout = timeout > 0 ? timeout : channel.getUrl().getPositiveParameter(TIMEOUT_KEY, DEFAULT_TIMEOUT);
    // put into waiting map.
    FUTURES.put(id, this);
    CHANNELS.put(id, channel);
}

8 心跳检查

Dubbo采用双向心跳的方式检测Client端与Server端的连通性。

我们再来看看 Dubbo 是如何设计应用层心跳的。Dubbo 的心跳是双向心跳,客户端会给服务端发送心跳,反之,服务端也会向客户端发送心跳

1. 创建定时器

public class HeaderExchangeClient implements ExchangeClient {
    private final Client client;
    private final ExchangeChannel channel;
    private static final HashedWheelTimer IDLE_CHECK_TIMER = new HashedWheelTimer(
            new NamedThreadFactory("dubbo-client-idleCheck", true), 1, TimeUnit.SECONDS, TICKS_PER_WHEEL);
    private HeartbeatTimerTask heartBeatTimerTask;
    private ReconnectTimerTask reconnectTimerTask;
    public HeaderExchangeClient(Client client, boolean startTimer) {
        Assert.notNull(client, "Client can't be null");
        this.client = client;
        this.channel = new HeaderExchangeChannel(client);
        if (startTimer) {
            URL url = client.getUrl();
            //开启心跳失败之后处理重连,断连的逻辑定时任务
            startReconnectTask(url);
            //开启发送心跳请求定时任务
            startHeartBeatTask(url);
        }
    }

Dubbo 在 HeaderExchangeClient初始化时开启了两个定时任务

  • startReconnectTask 主要用于定时发送心跳请求
  • startHeartBeatTask 主要用于心跳失败之后处理重连,断连的逻辑

2. 发送心跳请求

详细解析下心跳检测定时任务的逻辑 HeartbeatTimerTask#doTask

  protected void doTask(Channel channel) {
      Long lastRead = lastRead(channel);
      Long lastWrite = lastWrite(channel);
      if ((lastRead != null && now() - lastRead > heartbeat)
          || (lastWrite != null && now() - lastWrite > heartbeat)) {
          Request req = new Request();
          req.setVersion(Version.getProtocolVersion());
          req.setTwoWay(true);
          req.setEvent(Request.HEARTBEAT_EVENT);
          channel.send(req);
      }
   }

前面已经介绍过,Dubbo 采取的是双向心跳设计,即服务端会向客户端发送心跳,客户端也会向服务端发送心跳,接收的一方更新 lastRead 字段,发送的一方更新 lastWrite 字段,超过心跳间隙的时间,便发送心跳请求给对端。这里的 lastRead/lastWrite 同样会被同一个通道上的普通调用更新,通过更新这两个字段,实现了只在连接空闲时才会真正发送空闲报文的机制,符合我们一开始科普的做法。

3. 处理重连和断连

继续研究下重连和断连定时器都实现了什么 ReconnectTimerTask#doTask

   protected void doTask(Channel channel) {
       Long lastRead = lastRead(channel);
       Long now = now();
       if (!channel.isConnected()) {
           ((Client) channel).reconnect();
           // check pong at client
       } else if (lastRead != null && now - lastRead > idleTimeout) {
           ((Client) channel).reconnect();
       }
    }

第二个定时器则负责根据客户端、服务端类型来对连接做不同的处理,当超过设置的心跳总时间之后,客户端选择的是重新连接,服务端则是选择直接断开连接。这样的考虑是合理的,客户端调用是强依赖可用连接的,而服务端可以等待客户端重新建立连接。


Dubbo 对于建立的每一个连接,同时在客户端和服务端开启了 2 个定时器,一个用于定时发送心跳,一个用于定时重连、断连,执行的频率均为各自检测周期的 1/3。定时发送心跳的任务负责在连接空闲时,向对端发送心跳包。定时重连、断连的任务负责检测 lastRead 是否在超时周期内仍未被更新,如果判定为超时,客户端处理的逻辑是重连,服务端则采取断连的措施。

目录
相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
109 30
|
21天前
|
SQL 安全 算法
网络安全之盾:漏洞防御与加密技术解析
在数字时代的浪潮中,网络安全和信息安全成为维护个人隐私和企业资产的重要防线。本文将深入探讨网络安全的薄弱环节—漏洞,并分析如何通过加密技术来加固这道防线。文章还将分享提升安全意识的重要性,以预防潜在的网络威胁,确保数据的安全与隐私。
41 2
|
23天前
|
安全 算法 网络安全
网络安全的盾牌与剑:漏洞防御与加密技术深度解析
在数字信息的海洋中,网络安全是航行者不可或缺的指南针。本文将深入探讨网络安全的两大支柱——漏洞防御和加密技术,揭示它们如何共同构筑起信息时代的安全屏障。从最新的网络攻击手段到防御策略,再到加密技术的奥秘,我们将一起揭开网络安全的神秘面纱,理解其背后的科学原理,并掌握保护个人和企业数据的关键技能。
28 3
|
26天前
|
网络协议
网络通信的基石:TCP/IP协议栈的层次结构解析
在现代网络通信中,TCP/IP协议栈是构建互联网的基础。它定义了数据如何在网络中传输,以及如何确保数据的完整性和可靠性。本文将深入探讨TCP/IP协议栈的层次结构,揭示每一层的功能和重要性。
53 5
|
28天前
|
网络协议 安全 文件存储
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问,即使IP地址变化,也能通过DDNS服务保持连接。适用于家庭网络远程访问设备及企业临时或移动设备管理,提供便捷性和灵活性。示例代码展示了如何使用Python实现基本的DDNS更新。尽管存在服务可靠性和安全性挑战,DDNS仍极大提升了网络资源的利用效率。
50 6
|
26天前
|
监控 网络协议 网络性能优化
网络通信的核心选择:TCP与UDP协议深度解析
在网络通信领域,TCP(传输控制协议)和UDP(用户数据报协议)是两种基础且截然不同的传输层协议。它们各自的特点和适用场景对于网络工程师和开发者来说至关重要。本文将深入探讨TCP和UDP的核心区别,并分析它们在实际应用中的选择依据。
53 3
|
29天前
|
SQL 监控 安全
网络安全的盾牌与利剑:漏洞防御与加密技术解析
在数字时代的洪流中,网络安全如同一场没有硝烟的战争。本文将深入探讨网络安全的核心议题,从网络漏洞的发现到防御策略的实施,以及加密技术的运用,揭示保护信息安全的关键所在。通过实际案例分析,我们将一窥网络攻击的手段和防御的艺术,同时提升个人与企业的安全意识,共同构筑一道坚固的数字防线。
|
1月前
|
存储 SQL 安全
网络安全的屏障与钥匙:漏洞防御与加密技术解析
【10月更文挑战第42天】在数字时代的浪潮中,网络安全成为守护个人隐私与企业数据不被侵犯的关键防线。本文将深入探讨网络安全中的两大核心议题——漏洞防御和加密技术。我们将从网络漏洞的识别开始,逐步揭示如何通过有效的安全策略和技术手段来防范潜在的网络攻击。随后,文章将转向加密技术的奥秘,解读其在数据传输和存储过程中保护信息安全的作用机制。最后,强调提升个人和企业的安全意识,是构建坚固网络安全屏障的重要一环。
|
1月前
|
SQL 人工智能 安全
网络安全的盾牌:漏洞防护与加密技术解析
在数字时代的浪潮中,网络安全和信息安全成为了维护社会稳定和保护个人隐私的关键。本文将深入探讨网络安全中的常见漏洞、先进的加密技术以及提升安全意识的重要性。通过分析网络攻击的手法,揭示防御策略的构建过程,并分享实用的代码示例,旨在为读者提供一套全面的网络安全知识体系,以增强个人和组织在网络空间的防御能力。
|
7月前
|
Dubbo Java 应用服务中间件
微服务学习 | Springboot整合Dubbo+Nacos实现RPC调用
微服务学习 | Springboot整合Dubbo+Nacos实现RPC调用

推荐镜像

更多