由浅入深Netty组件实战2

简介: 由浅入深Netty组件实战2

3.4 例4:同步处理任务失败

同步处理任务失败 - await

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);
eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    RuntimeException e = new RuntimeException("error...");
    log.debug("set failure, {}", e.toString());
    promise.setFailure(e);
});
log.debug("start...");
log.debug("{}", promise.getNow());
promise.await(); // 与 sync 和 get 区别在于,不会抛异常
log.debug("result {}", (promise.isSuccess() ? promise.getNow() : promise.cause()).toString());

输出

12:18:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
12:18:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - null
12:18:54 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set failure, java.lang.RuntimeException: error...
12:18:54 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - result java.lang.RuntimeException: error...

3.5 例5:异步处理任务失败

异步处理任务失败

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);
promise.addListener(future -> {
    log.debug("result {}", (promise.isSuccess() ? promise.getNow() : promise.cause()).toString());
});
eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    RuntimeException e = new RuntimeException("error...");
    log.debug("set failure, {}", e.toString());
    promise.setFailure(e);
});
log.debug("start...");

输出

12:04:57 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
12:04:58 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set failure, java.lang.RuntimeException: error...
12:04:58 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - result java.lang.RuntimeException: error...

3.6 例6:死锁检查

await 死锁检查

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);
eventExecutors.submit(()->{
    System.out.println("1");
    try {
        promise.await();
        // 注意不能仅捕获 InterruptedException 异常
        // 否则 死锁检查抛出的 BlockingOperationException 会继续向上传播
        // 而提交的任务会被包装为 PromiseTask,它的 run 方法中会 catch 所有异常然后设置为 Promise 的失败结果而不会抛出
    } catch (Exception e) { 
        e.printStackTrace();
    }
    System.out.println("2");
});
eventExecutors.submit(()->{
    System.out.println("3");
    try {
        promise.await();
    } catch (Exception e) {
        e.printStackTrace();
    }
    System.out.println("4");
});

输出

1
2
3
4
io.netty.util.concurrent.BlockingOperationException: DefaultPromise@47499c2a(incomplete)
  at io.netty.util.concurrent.DefaultPromise.checkDeadLock(DefaultPromise.java:384)
  at io.netty.util.concurrent.DefaultPromise.await(DefaultPromise.java:212)
  at com.itcast.oio.DefaultPromiseTest.lambda$main$0(DefaultPromiseTest.java:27)
  at io.netty.util.concurrent.PromiseTask$RunnableAdapter.call(PromiseTask.java:38)
  at io.netty.util.concurrent.PromiseTask.run(PromiseTask.java:73)
  at io.netty.channel.DefaultEventLoop.run(DefaultEventLoop.java:54)
  at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
  at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
  at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
  at java.lang.Thread.run(Thread.java:745)
io.netty.util.concurrent.BlockingOperationException: DefaultPromise@47499c2a(incomplete)
  at io.netty.util.concurrent.DefaultPromise.checkDeadLock(DefaultPromise.java:384)
  at io.netty.util.concurrent.DefaultPromise.await(DefaultPromise.java:212)
  at com.itcast.oio.DefaultPromiseTest.lambda$main$1(DefaultPromiseTest.java:36)
  at io.netty.util.concurrent.PromiseTask$RunnableAdapter.call(PromiseTask.java:38)
  at io.netty.util.concurrent.PromiseTask.run(PromiseTask.java:73)
  at io.netty.channel.DefaultEventLoop.run(DefaultEventLoop.java:54)
  at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
  at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
  at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
  at java.lang.Thread.run(Thread.java:745)

4 Handler & Pipeline

ChannelHandler 用来处理 Channel 上的各种事件,分为入站、出站两种。所有 ChannelHandler 被连成一串,就是 Pipeline

  • 入站处理器通常是 ChannelInboundHandlerAdapter 的子类,主要用来读取客户端数据,写回结果
  • 出站处理器通常是 ChannelOutboundHandlerAdapter 的子类,主要对写回结果进行加工

个比喻,每个 Channel 是一个产品的加工车间,Pipeline 是车间中的流水线,ChannelHandler 就是流水线上的各道工序,而后面要讲的 ByteBuf 是原材料,经过很多工序的加工:先经过一道道入站工序,再经过一道道出站工序最终变成产品

先搞清楚顺序,服务端

new ServerBootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(1);
                    ctx.fireChannelRead(msg); // 1
                }
            });
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(2);
                    ctx.fireChannelRead(msg); // 2
                }
            });
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(3);
                    ctx.channel().write(msg); // 3
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(4);
                    ctx.write(msg, promise); // 4
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(5);
                    ctx.write(msg, promise); // 5
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(6);
                    ctx.write(msg, promise); // 6
                }
            });
        }
    })
    .bind(8080);

客户端

new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080)
    .addListener((ChannelFutureListener) future -> {
        future.channel().writeAndFlush("hello,world");
    });

服务器端打印:

1
2
3
6
5
4

可以看到,ChannelInboundHandlerAdapter 是按照 addLast 的顺序执行的,而 ChannelOutboundHandlerAdapter 是按照 addLast 的逆序执行的。ChannelPipeline 的实现是一个 ChannelHandlerContext(包装了 ChannelHandler) 组成的双向链表

  • 入站处理器中,ctx.fireChannelRead(msg) 是调用下一个入站处理器
  • 如果注释掉 1 处代码,则仅会打印 1
  • 如果注释掉 2 处代码,则仅会打印 1 2
  • 3 处的 ctx.channel().write(msg) 会从尾部开始触发后续出站处理器的执行
  • 如果注释掉 3 处代码,则仅会打印 1 2 3

  • 类似的,出站处理器中,ctx.write(msg, promise) 的调用也会触发上一个出站处理器
  • 如果注释掉 6 处代码,则仅会打印 1 2 3 6
  • ctx.channel().write(msg) vs ctx.write(msg)
  • 都是触发出站处理器的执行
  • ctx.channel().write(msg) 从尾部开始查找出站处理器
  • ctx.write(msg) 是从当前节点找上一个出站处理器
  • 3 处的 ctx.channel().write(msg) 如果改为 ctx.write(msg) 仅会打印 1 2 3,因为节点3 之前没有其它出站处理器了
  • 6 处的 ctx.write(msg, promise) 如果改为 ctx.channel().write(msg) 会打印 1 2 3 6 6 6… 因为 ctx.channel().write() 是从尾部开始查找,结果又是节点6 自己

图1 - 服务端 pipeline 触发的原始流程,图中数字代表了处理步骤的先后次序

5 ByteBuf

是对字节数据的封装

5.1 创建

ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(10);
log(buffer);

上面代码创建了一个默认的 ByteBuf(池化基于直接内存的 ByteBuf),初始容量是 10

输出

read index:0 write index:0 capacity:10

其中 log 方法参考如下

private static void log(ByteBuf buffer) {
    int length = buffer.readableBytes();
    int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;
    StringBuilder buf = new StringBuilder(rows * 80 * 2)
        .append("read index:").append(buffer.readerIndex())
        .append(" write index:").append(buffer.writerIndex())
        .append(" capacity:").append(buffer.capacity())
        .append(NEWLINE);
    appendPrettyHexDump(buf, buffer);
    System.out.println(buf.toString());
}

5.2 直接内存 vs 堆内存

可以使用下面的代码来创建池化基于堆的 ByteBuf

ByteBuf buffer = ByteBufAllocator.DEFAULT.heapBuffer(10);

也可以使用下面的代码来创建池化基于直接内存的 ByteBuf

ByteBuf buffer = ByteBufAllocator.DEFAULT.directBuffer(10);
  • 直接内存创建和销毁的代价昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
  • 直接内存对 GC 压力小,因为这部分内存不受 JVM 垃圾回收的管理,但也要注意及时主动释放

5.3 池化 vs 非池化

池化的最大意义在于可以重用 ByteBuf,优点有

  • 没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是堆内存,也会增加 GC 压力
  • 有了池化,则可以重用池中 ByteBuf 实例,并且采用了与 jemalloc 类似的内存分配算法提升分配效率
  • 高并发时,池化功能更节约内存,减少内存溢出的可能

池化功能是否开启,可以通过下面的系统环境变量来设置

-Dio.netty.allocator.type={unpooled|pooled}
  • 4.1 以后,非 Android 平台默认启用池化实现,Android 平台启用非池化实现
  • 4.1 之前,池化功能还不成熟,默认是非池化实现

5.4 组成

ByteBuf 由四部分组成

最开始读写指针都在 0 位置

5.5 写入

方法列表,省略一些不重要的方法

方法签名 含义 备注
writeBoolean(boolean value) 写入 boolean 值 用一字节 01|00 代表 true|false
writeByte(int value) 写入 byte 值
writeShort(int value) 写入 short 值
writeInt(int value) 写入 int 值 Big Endian,即 0x250,写入后 00 00 02 50
writeIntLE(int value) 写入 int 值 Little Endian,即 0x250,写入后 50 02 00 00
writeLong(long value) 写入 long 值
writeChar(int value) 写入 char 值
writeFloat(float value) 写入 float 值
writeDouble(double value) 写入 double 值
writeBytes(ByteBuf src) 写入 netty 的 ByteBuf
writeBytes(byte[] src) 写入 byte[]
writeBytes(ByteBuffer src) 写入 nio 的 ByteBuffer
int writeCharSequence(CharSequence sequence, Charset charset) 写入字符串

注意

  • 这些方法的未指明返回值的,其返回值都是 ByteBuf,意味着可以链式调用
  • 网络传输,默认习惯是 Big Endian

先写入 4 个字节

buffer.writeBytes(new byte[]{1, 2, 3, 4});
log(buffer);

结果是

read index:0 write index:4 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------+

再写入一个 int 整数,也是 4 个字节

buffer.writeInt(5);
log(buffer);

结果是

read index:0 write index:8 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05                         |........        |
+--------+-------------------------------------------------+----------------+

还有一类方法是 set 开头的一系列方法,也可以写入数据,但不会改变写指针位置

目录
相关文章
|
7月前
|
Java
由浅入深Netty组件实战3
由浅入深Netty组件实战3
37 0
|
7月前
|
缓存 安全 Java
由浅入深Netty基础知识NIO三大组件原理实战 2
由浅入深Netty基础知识NIO三大组件原理实战
47 0
|
2月前
|
Java Unix Linux
【Netty技术专题】「原理分析系列」Netty强大特性之Native transports扩展开发实战
当涉及到网络通信和高性能的Java应用程序时,Netty是一个强大的框架。它提供了许多功能和组件,其中之一是JNI传输。JNI传输是Netty的一个特性,它为特定平台提供了高效的网络传输。 在本文中,我们将深入探讨Netty提供的特定平台的JNI传输功能,分析其优势和适用场景。我们将介绍每个特定平台的JNI传输,并讨论其性能、可靠性和可扩展性。通过了解这些特定平台的JNI传输,您将能够更好地选择和配置适合您应用程序需求的网络传输方式,以实现最佳的性能和可靠性。
57 7
【Netty技术专题】「原理分析系列」Netty强大特性之Native transports扩展开发实战
|
7月前
|
前端开发 安全 Java
由浅入深Netty组件实战1
由浅入深Netty组件实战1
58 0
|
1月前
|
NoSQL Redis
Netty实战:模拟Redis的客户端
Netty实战:模拟Redis的客户端
14 0
|
3月前
|
分布式计算 前端开发 网络协议
13W字!腾讯高工手写“Netty速成手册”,3天能走向实战
在java界,netty无疑是开发网络应用的拿手菜。你不需要太多关注复杂的nio模型和底层网络的细节,使用其丰富的接口,可以很容易的实现复杂的通讯功能。
|
3月前
|
监控 网络协议 调度
Netty Review - 深入探讨Netty的心跳检测机制:原理、实战、IdleStateHandler源码分析
Netty Review - 深入探讨Netty的心跳检测机制:原理、实战、IdleStateHandler源码分析
113 0
|
4月前
|
缓存 NoSQL Java
聚焦实战技能,剖析底层原理:Netty+Redis+ZooKeeper+高并发实战
移动时代、5G时代、物联网时代的大幕已经开启,它们对于高性能、高并发的开发知识和技术的要求,抬升了Java工程师的学习台阶和面试门槛。
|
7月前
|
监控 Java Linux
由浅入深Netty基础知识NIO网络编程1
由浅入深Netty基础知识NIO网络编程
40 0
|
7月前
|
Java
由浅入深Netty基础知识NIO三大组件原理实战 1
由浅入深Netty基础知识NIO三大组件原理实战
61 0