BO-LSTM回归预测 | Matlab贝叶斯算法优化长短时记忆网络回归预测

简介: BO-LSTM回归预测 | Matlab贝叶斯算法优化长短时记忆网络回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习和人工智能领域,时间序列数据的回归预测是一个重要的问题。长短期记忆(LSTM)是一种广泛应用于处理时间序列数据的递归神经网络(RNN)架构。然而,LSTM模型的性能高度依赖于其超参数的选择,这使得模型的调优变得非常困难。为了解决这个问题,我们可以使用贝叶斯优化来自动地找到最佳的超参数配置。

贝叶斯优化是一种通过在搜索空间中选择合适的候选点来优化目标函数的方法。它通过建立一个代理模型来估计目标函数的性能,并使用这个模型来指导搜索过程。在这种情况下,我们可以使用贝叶斯优化来搜索LSTM模型的超参数配置,以最大化回归预测的准确性。

BO-LSTM是一种基于贝叶斯优化的LSTM模型,它结合了贝叶斯优化和LSTM模型的优势。BO-LSTM的核心思想是通过贝叶斯优化来选择LSTM模型的超参数配置,并使用这些配置来训练和预测时间序列数据。通过迭代地使用贝叶斯优化算法,BO-LSTM可以逐步改进模型的性能,从而实现更准确的回归预测。

为了实现BO-LSTM模型,我们需要定义LSTM模型的超参数空间和目标函数。超参数空间包括LSTM的隐藏层大小、学习率、迭代次数等。目标函数可以是回归预测的均方根误差(RMSE)或平均绝对误差(MAE)。贝叶斯优化算法将在超参数空间中选择候选点,并使用目标函数来评估它们的性能。通过迭代地选择候选点并更新代理模型,贝叶斯优化算法可以逐步改进模型的性能。

BO-LSTM的优点是它可以自动地找到最佳的超参数配置,而无需手动调优。这使得模型的训练和预测过程更加高效和准确。此外,BO-LSTM还可以适应不同的时间序列数据,并在不同的问题上取得良好的性能。

然而,BO-LSTM也有一些限制。首先,贝叶斯优化算法的计算成本较高,特别是在超参数空间较大的情况下。其次,BO-LSTM的性能高度依赖于目标函数的选择和超参数空间的定义。因此,在使用BO-LSTM之前,我们需要仔细选择目标函数和超参数空间,以确保取得最佳的结果。

总结起来,基于贝叶斯优化的长短期记忆BO-LSTM模型是一种强大的工具,用于时间序列数据的回归预测。它通过自动选择最佳的超参数配置来提高模型的性能,并在实践中取得了良好的效果。然而,我们仍然需要注意BO-LSTM的局限性,并根据具体问题的需求进行合理的调整和改进。

📣 部分代码

%% Example 'GpsMultiCorrelator' #3: Generation of energy matrices resulting from non-coherent integrations with different periods%  %  Generation of energy matrices resulting from the accumulation of non-coherent correlation results, over different periods, between:%  - A received signal including a GPS signal,%  - A local signal matching in terms of PRN, Doppler and code phase.% ParametersSamplingPeriod    = 100e-9;CarrierFrequency  = 0;PRN               = 3;CN0               = 45*10;Doppler           = 0;CodePhase         = 0;Duration          = 25e-3;% Creation of 'GpsSignals' objectGPS = ...    GpsSignals('SamplingPeriod',   SamplingPeriod,...               'CarrierFrequency', CarrierFrequency,...               'NextValues',       'replace',...               'PRN',              PRN,...               'CN0',              CN0,...               'Doppler',          Doppler,...               'CodePhase',        CodePhase);% Creation of 'GpsMultiCorrelator' objectMultiCorrelator = ...    GpsMultiCorrelator('SamplingPeriod',                 SamplingPeriod,...                       'CarrierFrequency',               CarrierFrequency,...                       'FilterFrequencies',              -4000:500:+4000-500,...                       'CorrelatorCodePhases',           -4:0.5:+4-0.5,...                           'PRN',                            PRN,...                       'Doppler',                        Doppler,...                       'CodePhase',                      CodePhase,...                       'CodePhaseIncrement',             0,...                       'NonCoherentIntegrationPeriod',   5e-3);    for n = 1:6        % Signal duration/non-coherent integration period    Duration = n*5e-3;        % Update of GPS signals    GPS.update('Duration',Duration);                   % Setting of non-coherent integration period    MultiCorrelator.set('NonCoherentIntegrationPeriod',Duration);            % Correlation       MultiCorrelator.correlate(GPS.Values);    end% FigureFigure = ...    figure('Color','w','Name','');Axes = subplot(4,1,1:3,'Parent',  Figure,'NextPlot','Add');% Display of energy matricesM = numel(MultiCorrelator.EnergyMatrices);for m = 1:M    [CorrelatorCodePhases_,FilterFrequencies_] = meshgrid(MultiCorrelator.EnergyMatrices(m).CodePhases,MultiCorrelator.EnergyMatrices(m).Frequencies);        surf(Axes,CorrelatorCodePhases_,FilterFrequencies_,MultiCorrelator.EnergyMatrices(m).Matrix,MultiCorrelator.EnergyMatrices(m).Matrix,...        'FaceColor','Interp','EdgeAlpha',0.75,'FaceAlpha',(M-m+1)/(M+1));end% Display of maximumMaxima = cellfun(@(M)max(M,[],'all'),{MultiCorrelator.EnergyMatrices.Matrix});m = find(eq(Maxima,max(Maxima)));[i,j] = find(eq(MultiCorrelator.EnergyMatrices(m).Matrix,Maxima(m)));text(MultiCorrelator.EnergyMatrices(m).CodePhases(j),MultiCorrelator.EnergyMatrices(m).Frequencies(i),MultiCorrelator.EnergyMatrices(m).Matrix(i,j),...     {'Energy maximum',...      sprintf('MultiCorrelator #%u: %+.fchip',j,MultiCorrelator.EnergyMatrices(m).CodePhases(j)),...      sprintf('Filter #%u: %+.fHz',i,MultiCorrelator.EnergyMatrices(m).Frequencies(i)),...            '\downarrow'},...     'HorizontalAlignment','center',...     'VerticalAlignment',  'bottom');% Display of informationsview(Axes,-30,30);T = [MultiCorrelator.EnergyMatrices(:).IntegrationTime];title({'Energy matrices',...         sprintf('(%u matrices x %u filters x %u correlators,',...                  numel(MultiCorrelator.EnergyMatrices),...                  numel(MultiCorrelator.EnergyMatrices(1).Frequencies),...                  numel(MultiCorrelator.EnergyMatrices(1).CodePhases)),...         sprintf('integration period: %s %sms)',num2str(1e3*T(1:end-1),'%.f, '),num2str(1e3*T(end),'%.f'))});xlabel('Code phase [chip]');ylabel('Frequency [Hz]');zlabel(sprintf('Energy - PRN%u',PRN));% ColorbarMap = hsv;Map = Map(1:find(diff(Map(:,1))>0,1,'first'),:);Map = [Map;0 0 1];colormap(fliplr(Map));Colorbar = colorbar;Colorbar.Label.String = 'Energy';Colorbar.Location = 'EastOutside';% Display of maximaAxes(2) = subplot(4,1,4,'Parent',Figure,'NextPlot','Add','Box','on','Xgrid','on','Ygrid','on');plot(Axes(2),1e3*T,Maxima,'.-');set(Axes(2),'Xlim',[min(1e3*T) max(1e3*T)]);title('Energy maximum vs non-coherent integration period')xlabel('Non-coherent integration period [ms]');ylabel('Energy maximum');% Update of axesset([Axes';findall(Axes,'type','text')],'fontsize',9);% Main titlesgtitle('Energy matrices and non-coherent integration period',...        'FontSize',11,'FontWeight','Bold');% Maximization of figureFigure.WindowState = 'maximized';

⛳️ 运行结果

-----------------------误差计算--------------------------

评价结果如下所示:

平均绝对误差MAE为:0.19772

均方误差MSE为:       0.086281

均方根误差RMSEP为:  0.29374

决定系数R^2为:  0.98519

剩余预测残差RPD为:  8.3938

平均绝对百分比误差MAPE为:  0.053654

🔗 参考文献


🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合





相关文章
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
2天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
2天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
28 15
|
1天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章