BO-LSTM回归预测 | Matlab贝叶斯算法优化长短时记忆网络回归预测

简介: BO-LSTM回归预测 | Matlab贝叶斯算法优化长短时记忆网络回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习和人工智能领域,时间序列数据的回归预测是一个重要的问题。长短期记忆(LSTM)是一种广泛应用于处理时间序列数据的递归神经网络(RNN)架构。然而,LSTM模型的性能高度依赖于其超参数的选择,这使得模型的调优变得非常困难。为了解决这个问题,我们可以使用贝叶斯优化来自动地找到最佳的超参数配置。

贝叶斯优化是一种通过在搜索空间中选择合适的候选点来优化目标函数的方法。它通过建立一个代理模型来估计目标函数的性能,并使用这个模型来指导搜索过程。在这种情况下,我们可以使用贝叶斯优化来搜索LSTM模型的超参数配置,以最大化回归预测的准确性。

BO-LSTM是一种基于贝叶斯优化的LSTM模型,它结合了贝叶斯优化和LSTM模型的优势。BO-LSTM的核心思想是通过贝叶斯优化来选择LSTM模型的超参数配置,并使用这些配置来训练和预测时间序列数据。通过迭代地使用贝叶斯优化算法,BO-LSTM可以逐步改进模型的性能,从而实现更准确的回归预测。

为了实现BO-LSTM模型,我们需要定义LSTM模型的超参数空间和目标函数。超参数空间包括LSTM的隐藏层大小、学习率、迭代次数等。目标函数可以是回归预测的均方根误差(RMSE)或平均绝对误差(MAE)。贝叶斯优化算法将在超参数空间中选择候选点,并使用目标函数来评估它们的性能。通过迭代地选择候选点并更新代理模型,贝叶斯优化算法可以逐步改进模型的性能。

BO-LSTM的优点是它可以自动地找到最佳的超参数配置,而无需手动调优。这使得模型的训练和预测过程更加高效和准确。此外,BO-LSTM还可以适应不同的时间序列数据,并在不同的问题上取得良好的性能。

然而,BO-LSTM也有一些限制。首先,贝叶斯优化算法的计算成本较高,特别是在超参数空间较大的情况下。其次,BO-LSTM的性能高度依赖于目标函数的选择和超参数空间的定义。因此,在使用BO-LSTM之前,我们需要仔细选择目标函数和超参数空间,以确保取得最佳的结果。

总结起来,基于贝叶斯优化的长短期记忆BO-LSTM模型是一种强大的工具,用于时间序列数据的回归预测。它通过自动选择最佳的超参数配置来提高模型的性能,并在实践中取得了良好的效果。然而,我们仍然需要注意BO-LSTM的局限性,并根据具体问题的需求进行合理的调整和改进。

📣 部分代码

%% Example 'GpsMultiCorrelator' #3: Generation of energy matrices resulting from non-coherent integrations with different periods%  %  Generation of energy matrices resulting from the accumulation of non-coherent correlation results, over different periods, between:%  - A received signal including a GPS signal,%  - A local signal matching in terms of PRN, Doppler and code phase.% ParametersSamplingPeriod    = 100e-9;CarrierFrequency  = 0;PRN               = 3;CN0               = 45*10;Doppler           = 0;CodePhase         = 0;Duration          = 25e-3;% Creation of 'GpsSignals' objectGPS = ...    GpsSignals('SamplingPeriod',   SamplingPeriod,...               'CarrierFrequency', CarrierFrequency,...               'NextValues',       'replace',...               'PRN',              PRN,...               'CN0',              CN0,...               'Doppler',          Doppler,...               'CodePhase',        CodePhase);% Creation of 'GpsMultiCorrelator' objectMultiCorrelator = ...    GpsMultiCorrelator('SamplingPeriod',                 SamplingPeriod,...                       'CarrierFrequency',               CarrierFrequency,...                       'FilterFrequencies',              -4000:500:+4000-500,...                       'CorrelatorCodePhases',           -4:0.5:+4-0.5,...                           'PRN',                            PRN,...                       'Doppler',                        Doppler,...                       'CodePhase',                      CodePhase,...                       'CodePhaseIncrement',             0,...                       'NonCoherentIntegrationPeriod',   5e-3);    for n = 1:6        % Signal duration/non-coherent integration period    Duration = n*5e-3;        % Update of GPS signals    GPS.update('Duration',Duration);                   % Setting of non-coherent integration period    MultiCorrelator.set('NonCoherentIntegrationPeriod',Duration);            % Correlation       MultiCorrelator.correlate(GPS.Values);    end% FigureFigure = ...    figure('Color','w','Name','');Axes = subplot(4,1,1:3,'Parent',  Figure,'NextPlot','Add');% Display of energy matricesM = numel(MultiCorrelator.EnergyMatrices);for m = 1:M    [CorrelatorCodePhases_,FilterFrequencies_] = meshgrid(MultiCorrelator.EnergyMatrices(m).CodePhases,MultiCorrelator.EnergyMatrices(m).Frequencies);        surf(Axes,CorrelatorCodePhases_,FilterFrequencies_,MultiCorrelator.EnergyMatrices(m).Matrix,MultiCorrelator.EnergyMatrices(m).Matrix,...        'FaceColor','Interp','EdgeAlpha',0.75,'FaceAlpha',(M-m+1)/(M+1));end% Display of maximumMaxima = cellfun(@(M)max(M,[],'all'),{MultiCorrelator.EnergyMatrices.Matrix});m = find(eq(Maxima,max(Maxima)));[i,j] = find(eq(MultiCorrelator.EnergyMatrices(m).Matrix,Maxima(m)));text(MultiCorrelator.EnergyMatrices(m).CodePhases(j),MultiCorrelator.EnergyMatrices(m).Frequencies(i),MultiCorrelator.EnergyMatrices(m).Matrix(i,j),...     {'Energy maximum',...      sprintf('MultiCorrelator #%u: %+.fchip',j,MultiCorrelator.EnergyMatrices(m).CodePhases(j)),...      sprintf('Filter #%u: %+.fHz',i,MultiCorrelator.EnergyMatrices(m).Frequencies(i)),...            '\downarrow'},...     'HorizontalAlignment','center',...     'VerticalAlignment',  'bottom');% Display of informationsview(Axes,-30,30);T = [MultiCorrelator.EnergyMatrices(:).IntegrationTime];title({'Energy matrices',...         sprintf('(%u matrices x %u filters x %u correlators,',...                  numel(MultiCorrelator.EnergyMatrices),...                  numel(MultiCorrelator.EnergyMatrices(1).Frequencies),...                  numel(MultiCorrelator.EnergyMatrices(1).CodePhases)),...         sprintf('integration period: %s %sms)',num2str(1e3*T(1:end-1),'%.f, '),num2str(1e3*T(end),'%.f'))});xlabel('Code phase [chip]');ylabel('Frequency [Hz]');zlabel(sprintf('Energy - PRN%u',PRN));% ColorbarMap = hsv;Map = Map(1:find(diff(Map(:,1))>0,1,'first'),:);Map = [Map;0 0 1];colormap(fliplr(Map));Colorbar = colorbar;Colorbar.Label.String = 'Energy';Colorbar.Location = 'EastOutside';% Display of maximaAxes(2) = subplot(4,1,4,'Parent',Figure,'NextPlot','Add','Box','on','Xgrid','on','Ygrid','on');plot(Axes(2),1e3*T,Maxima,'.-');set(Axes(2),'Xlim',[min(1e3*T) max(1e3*T)]);title('Energy maximum vs non-coherent integration period')xlabel('Non-coherent integration period [ms]');ylabel('Energy maximum');% Update of axesset([Axes';findall(Axes,'type','text')],'fontsize',9);% Main titlesgtitle('Energy matrices and non-coherent integration period',...        'FontSize',11,'FontWeight','Bold');% Maximization of figureFigure.WindowState = 'maximized';

⛳️ 运行结果

-----------------------误差计算--------------------------

评价结果如下所示:

平均绝对误差MAE为:0.19772

均方误差MSE为:       0.086281

均方根误差RMSEP为:  0.29374

决定系数R^2为:  0.98519

剩余预测残差RPD为:  8.3938

平均绝对百分比误差MAPE为:  0.053654

🔗 参考文献


🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合





相关文章
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
18天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
21天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
34 8
|
20天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。

热门文章

最新文章