1 单例模式的应用场景介绍
1、听说过单例模式,但不知道如何应用的人群。
2、单例模式是非常经典的高频面试题,希望通过面试单例彰显技术深度,顺利拿到Offer的人群。
单例模式(SingletonPattern)是指确保一个类在任何情况下都绝对只有一个实例,并提供一个全局访问点。单例模式是创建型模式。单例模式在现实生活中应用也非常广泛,例如,公司CEO、部门经 理 等 。 J2EE 标 准 中 的 ServletContext 、 ServletContextConfig 等 、 Spring 框 架 应 用 中 的 ApplicationContext、数据库的连接池BDPool等也都是单例形式。
2 饿汉式单例模式
2.1 静态方法获得私有成员对象
/** * 优点:执行效率高,性能高,没有任何的锁 * 缺点:某些情况下,可能会造成内存浪费 */ public class HungrySingleton { //先静态、后动态 //先属性、后方法 //先上后下 private static final HungrySingleton hungrySingleton = new HungrySingleton(); private HungrySingleton(){} public static HungrySingleton getInstance(){ return hungrySingleton; } }
2.2 利用静态代码块与类同时加载的特性生成单例对象
//饿汉式静态块单例模式 public class HungryStaticSingleton { //先静态后动态 //先上,后下 //先属性后方法 private static final HungryStaticSingleton hungrySingleton; static { hungrySingleton = new HungryStaticSingleton(); } private HungryStaticSingleton(){} public static HungryStaticSingleton getInstance(){ return hungrySingleton; } }
类结构图
2.3 优缺点
优点:没有加任何锁、执行效率比较高,用户体验比懒汉式单例模式更好。
缺点:类加载的时候就初始化,不管用与不用都占着空间,浪费了内存,有可能“占着茅坑不拉屎”。
3 懒汉式单例模式
特点
懒汉式单例模式的特点是:被外部类调用的时候内部类才会加载。
2.1 加锁
/** * 优点:节省了内存,线程安全 * 缺点:性能低 */ //懒汉式单例模式在外部需要使用的时候才进行实例化 public class LazySimpleSingletion { private static LazySimpleSingletion instance; //静态块,公共内存区域 private LazySimpleSingletion(){} public synchronized static LazySimpleSingletion getInstance(){ if(instance == null){ instance = new LazySimpleSingletion(); } return instance; } } public class ExectorThread implements Runnable { public void run() { LazySimpleSingletion instance = LazySimpleSingletion.getInstance(); System.out.println(Thread.currentThread().getName() + ":" + instance); } } public class LazySimpleSingletonTest { public static void main(String[] args) { Thread t1 = new Thread(new ExectorThread()); Thread t2 = new Thread(new ExectorThread()); t1.start(); t2.start(); System.out.println("End"); } }
给getInstance()加上synchronized关键字,使这个方法变成线程同步方法:
当执行其中一个线程并调用getInstance()方法时,另一个线程在调用getInstance() 方法,线程的状态由 RUNNING 变成了 MONITOR,出现阻塞。直到第一个线程执行完,第二个线程 才恢复到RUNNING状态继续调用getInstance()方法
用 synchronized加锁时,在线程数量比较多的情况下,如果CPU分配压力上升,则会导致大批线程阻塞, 从而导致程序性能大幅下降。那么,有没有一种更好的方式,既能兼顾线程安全又能提升程序性能呢? 答案是肯定的。我们来看双重检查锁的单例模式:
2.2 双重检查锁
/** * 优点:性能高了,线程安全了 * 缺点:可读性难度加大,不够优雅 */ public class LazyDoubleCheckSingleton { // volatile解决指令重排序 private volatile static LazyDoubleCheckSingleton instance; private LazyDoubleCheckSingleton() { } public static LazyDoubleCheckSingleton getInstance() { //检查是否要阻塞,第一个instance == null是为了创建后不再走synchronized代码,提高效率。可以理解是个开关。创建后这个开关就关上,后面的代码就不用执行了。 if (instance == null) { synchronized (LazyDoubleCheckSingleton.class) { //检查是否要重新创建实例 if (instance == null) { instance = new LazyDoubleCheckSingleton(); //指令重排序的问题 //1.分配内存给这个对象 //2.初始化对象 //3.设置 lazy 指向刚分配的内存地址 } } } return instance; } } public class ExectorThread implements Runnable { public void run() { LazyDoubleCheckSingleton instance = LazyDoubleCheckSingleton.getInstance(); System.out.println(Thread.currentThread().getName() + ":" + instance); } } public class LazySimpleSingletonTest { public static void main(String[] args) { Thread t1 = new Thread(new ExectorThread()); Thread t2 = new Thread(new ExectorThread()); t1.start(); t2.start(); System.out.println("End"); } }
当第一个线程调用 getInstance()方法时,第二个线程也可以调用。当第一个线程执行到 synchronized时会上锁,第二个线程就会变成 MONITOR状态,出现阻塞。此时,阻塞并不是基于整 个LazySimpleSingleton类的阻塞,而是在getInstance()方法内部的阻塞,只要逻辑不太复杂,对于 调用者而言感知不到。
但是,用到 synchronized 关键字总归要上锁,对程序性能还是存在一定影响的。难道就真的没有更好的方案吗?当然有。我们可以从类初始化的角度来考虑,看下面的代码,采用静态内部类的方式:
2.3 静态内部类
/* ClassPath : LazyStaticInnerClassSingleton.class LazyStaticInnerClassSingleton$LazyHolder.class 优点:写法优雅,利用了Java本身语法特点,性能高,避免了内存浪费,不能被反射破坏 缺点:不优雅 */ //这种形式兼顾饿汉式单例模式的内存浪费问题和 synchronized 的性能问题 //完美地屏蔽了这两个缺点 //自认为史上最牛的单例模式的实现方式 public class LazyStaticInnerClassSingleton { //使用 LazyInnerClassGeneral 的时候,默认会先初始化内部类 //如果没使用,则内部类是不加载的 private LazyStaticInnerClassSingleton(){ // if(LazyHolder.INSTANCE != null){ // throw new RuntimeException("不允许非法创建多个实例"); // } } //每一个关键字都不是多余的,static 是为了使单例的空间共享,保证这个方法不会被重写、重载 private static LazyStaticInnerClassSingleton getInstance(){ //在返回结果以前,一定会先加载内部类 return LazyHolder.INSTANCE; } //默认不加载 private static class LazyHolder{ private static final LazyStaticInnerClassSingleton INSTANCE = new LazyStaticInnerClassSingleton(); } }
这种方式兼顾了饿汉式单例模式的内存浪费问题和 synchronized 的性能问题。内部类一定是要在方法调用之前初始化,巧妙地避免了线程安全问题。
内部类语法特性 : 内部类用时才加载
4 反射破坏单例
public class ReflectTest { public static void main(String[] args) { try { //在很无聊的情况下,进行破坏 Class<?> clazz = LazyStaticInnerClassSingleton.class; //通过反射获取私有的构造方法 Constructor c = clazz.getDeclaredConstructor(null); //强制访问 c.setAccessible(true); //暴力初始化 Object instance1 = c.newInstance(); //调用了两次构造方法,相当于“new”了两次,犯了原则性错误 Object instance2 = c.newInstance(); System.out.println(instance1); System.out.println(instance2); System.out.println(instance1 == instance2); // Enum }catch (Exception e){ e.printStackTrace(); } } } com.gupaoedu.vip.pattern.singleton.lazy.LazyStaticInnerClassSingleton@64cee07 com.gupaoedu.vip.pattern.singleton.lazy.LazyStaticInnerClassSingleton@1761e840 false
大家有没有发现,上面介绍的单例模式的构造方法除了加上 private 关键字,没有做任何处理。如 果我们使用反射来调用其构造方法,再调用 getInstance()方法,应该有两个不同的实例。现在来看一 段测试代码,以LazyInnerClassSingleton为例:
显然,创建了两个不同的实例。现在,我们在其构造方法中做一些限制,一旦出现多次重复创建, 则直接抛出异常。所以需要在私有构造方法添加异常:
private LazyStaticInnerClassSingleton(){ if(LazyHolder.INSTANCE != null){ throw new RuntimeException("不允许非法创建多个实例"); } }
5 序列化破坏单例(扩展知识)
一个单例对象创建好后,有时候需要将对象序列化然后写入磁盘,下次使用时再从磁盘中读取对象 并进行反序列化,将其转化为内存对象。反序列化后的对象会重新分配内存,即重新创建。如果序列化 的目标对象为单例对象,就违背了单例模式的初衷,相当于破坏了单例,来看一段代码:
//反序列化导致破坏单例模式 public class SeriableSingleton implements Serializable { //序列化 //把内存中对象的状态转换为字节码的形式 //把字节码通过IO输出流,写到磁盘上 //永久保存下来,持久化 //反序列化 //将持久化的字节码内容,通过IO输入流读到内存中来 //转化成一个Java对象 // 饿汉式 public final static SeriableSingleton INSTANCE = new SeriableSingleton(); private SeriableSingleton(){} public static SeriableSingleton getInstance(){ return INSTANCE; } // private Object readResolve(){ return INSTANCE;} } public class SeriableSingletonTest { public static void main(String[] args) { SeriableSingleton s1 = null; SeriableSingleton s2 = SeriableSingleton.getInstance(); FileOutputStream fos = null; try { fos = new FileOutputStream("SeriableSingleton.obj"); ObjectOutputStream oos = new ObjectOutputStream(fos); oos.writeObject(s2); oos.flush(); oos.close(); FileInputStream fis = new FileInputStream("SeriableSingleton.obj"); ObjectInputStream ois = new ObjectInputStream(fis); s1 = (SeriableSingleton)ois.readObject(); ois.close(); System.out.println(s1); System.out.println(s2); System.out.println(s1 == s2); } catch (Exception e) { e.printStackTrace(); } } } 打印结果: com.gupaoedu.vip.pattern.singleton.seriable.SeriableSingleton@68837a77 com.gupaoedu.vip.pattern.singleton.seriable.SeriableSingleton@4b6995df false
从运行结果可以看出,反序列化后的对象和手动创建的对象是不一致的,实例化了两次,违背了单 例模式的设计初衷。那么,我们如何保证在序列化的情况下也能够实现单例模式呢?其实很简单,只需 要增加readResolve()方法即可。
再看运行结果,如下图所示。
com.gupaoedu.vip.pattern.singleton.seriable.SeriableSingleton@4b6995df com.gupaoedu.vip.pattern.singleton.seriable.SeriableSingleton@4b6995df true
大家一定会想:这是什么原因呢?为什么要这样写?看上去很神奇的样子,也让人有些费解。不如 我们一起来看看JDK的源码实现以了解清楚。我们进入ObjectInputStream类的readObject()方法, 代码如下:
public final Object readObject() throws IOException, ClassNotFoundException { if (enableOverride) { return readObjectOverride(); } // if nested read, passHandle contains handle of enclosing object int outerHandle = passHandle; try { Object obj = readObject0(false); handles.markDependency(outerHandle, passHandle); ClassNotFoundException ex = handles.lookupException(passHandle); if (ex != null) { throw ex; } if (depth == 0) { vlist.doCallbacks(); } return obj; } finally { passHandle = outerHandle; if (closed && depth == 0) { clear(); } } }
我们发现,在readObject()方法中又调用了重写的readObject0()方法。进入readObject0()方法, 代码如下:
private Object readObject0(boolean unshared) throws IOException { ... case TC_OBJECT: return checkResolve(readOrdinaryObject(unshared)); ... }
我们看到TC_OBJECT中调用了ObjectInputStream的readOrdinaryObject()方法,看源码:
private Object readOrdinaryObject(boolean unshared) throws IOException { if (bin.readByte() != TC_OBJECT) { throw new InternalError(); } ObjectStreamClass desc = readClassDesc(false); desc.checkDeserialize(); Class<?> cl = desc.forClass(); if (cl == String.class || cl == Class.class || cl == ObjectStreamClass.class) { throw new InvalidClassException("invalid class descriptor"); } Object obj; try { obj = desc.isInstantiable() ? desc.newInstance() : null; } catch (Exception ex) { throw (IOException) new InvalidClassException( desc.forClass().getName(), "unable to create instance").initCause(ex); } ... return obj; }
我们发现调用了ObjectStreamClass的isInstantiable()方法,而isInstantiable()方法的代码如下:
boolean isInstantiable() { requireInitialized(); return (cons != null); }
上述代码非常简单,就是判断一下构造方法是否为空,构造方法不为空就返回true。这意味着只要 有无参构造方法就会实例化。
这时候其实还没有找到加上 readResolve()方法就避免了单例模式被破坏的真正原因。再回到 ObjectInputStream的readOrdinaryObject()方法,继续往下看:
private Object readOrdinaryObject(boolean unshared) throws IOException { if (bin.readByte() != TC_OBJECT) { throw new InternalError(); } ObjectStreamClass desc = readClassDesc(false); desc.checkDeserialize(); Class<?> cl = desc.forClass(); if (cl == String.class || cl == Class.class || cl == ObjectStreamClass.class) { throw new InvalidClassException("invalid class descriptor"); } Object obj; try { obj = desc.isInstantiable() ? desc.newInstance() : null; } catch (Exception ex) { throw (IOException) new InvalidClassException( desc.forClass().getName(), "unable to create instance").initCause(ex); } ... if (obj != null && handles.lookupException(passHandle) == null && desc.hasReadResolveMethod()) { Object rep = desc.invokeReadResolve(obj); if (unshared && rep.getClass().isArray()) { rep = cloneArray(rep); } if (rep != obj) { // Filter the replacement object if (rep != null) { if (rep.getClass().isArray()) { filterCheck(rep.getClass(), Array.getLength(rep)); } else { filterCheck(rep.getClass(), -1); } } handles.setObject(passHandle, obj = rep); } } return obj; }
判断无参构造方法是否存在之后,又调用了hasReadResolveMethod()方法,来看代码:
boolean hasReadResolveMethod() { requireInitialized(); return (readResolveMethod != null); }
上述代码逻辑非常简单,就是判断 readResolveMethod 是否为空,不为空就返回 true。那么 readResolveMethod是在哪里赋值的呢?通过全局查找知道,在私有方法 ObjectStreamClass()中给 readResolveMethod进行了赋值,来看代码:
private final void requireInitialized() { if (!initialized) throw new InternalError("Unexpected call when not initialized"); }
上面的逻辑其实就是通过反射找到一个无参的 readResolve()方法,并且保存下来。现在回到 ObjectInputStream 的 readOrdinaryObject()方法继续往下看,如果 readResolve()方法存在则调用 invokeReadResolve()方法,来看代码:
Object invokeReadResolve(Object obj) throws IOException, UnsupportedOperationException { requireInitialized(); if (readResolveMethod != null) { try { return readResolveMethod.invoke(obj, (Object[]) null); } catch (InvocationTargetException ex) { Throwable th = ex.getTargetException(); if (th instanceof ObjectStreamException) { throw (ObjectStreamException) th; } else { throwMiscException(th); throw new InternalError(th); // never reached } } catch (IllegalAccessException ex) { // should not occur, as access checks have been suppressed throw new InternalError(ex); } } else { throw new UnsupportedOperationException(); } }
我们可以看到,在invokeReadResolve()方法中用反射调用了readResolveMethod方法。
通过JDK源码分析我们可以看出,虽然增加 readResolve()方法返回实例解决了单例模式被破坏的 问题,但是实际上实例化了两次,只不过新创建的对象没有被返回而已。如果创建对象的动作发生频率加快,就意味着内存分配开销也会随之增大,难道真的就没办法从根本上解决问题吗?下面讲的注册式单例也许能帮助到你。
为什么添加了 **readResolve()**方法就可以了?
ObjectInputStream源码中,读取文件时写死判断是否有readResolve()方法,有调用这个方法,没有则重新创建对象。
