深度学习卷积神经网络 1

简介: 深度学习卷积神经网络

1 CNN网络的构成

利用全连接神经网络对图像进行处理存在以下两个问题:

  1. 需要处理的数据量大,效率低

假如我们处理一张 1000×1000 像素的图片,参数量如下:

1000×1000×3=3,000,000

这么大量的数据处理起来是非常消耗资源的

  1. 图像在维度调整的过程中很难保留原有的特征,导致图像处理的准确率不高

假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产生完全不同的数据表达。但是从图像的角度来看,图像的内容(本质)并没有发生变化,只是位置发生了变化。所以当我们移动图像中的物体,用全连接升降得到的结果会差异很大,这是不符合图像处理的要求的。


CNN网络受人类视觉神经系统的启发,人类的视觉原理:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只人脸)。下面是人脑进行人脸识别的一个示例:

image.png

CNN网络主要有三部分构成:卷积层、池化层和全连接层构成,其中卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似人工神经网络的部分,用来输出想要的结果。

整个CNN网络结构如下图所示:

2 卷积层

卷积层是卷积神经网络中的核心模块,卷积层的目的是提取输入特征图的特征,如下图所示,卷积核可以提取图像中的边缘信息。

2.1 卷积的计算方法

那卷积是怎么进行计算的呢?

卷积运算本质上就是在滤波器和输入数据的局部区域间做点积。

左上角的点计算方法:

同理可以计算其他各点,得到最终的卷积结果,

最后一点的计算方法是:

2.2 padding(填充)

在上述卷积过程中,特征图比原始图减小了很多,我们可以在原图像的周围进行padding,来保证在卷积过程中特征图大小不变。


2.3 stride(步长)

按照步长为1来移动卷积核,计算特征图如下所示:

如果我们把stride增大,比如设为2,也是可以提取特征图的,如下图所示:

2.4 多通道卷积

实际中的图像都是多个通道组成的,我们怎么计算卷积呢?

计算方法如下:当输入有多个通道(channel)时(例如图片可以有 RGB 三个通道),卷积核需要拥有相同的channel数,每个卷积核 channel 与输入层的对应 channel 进行卷积,将每个 channel 的卷积结果按位相加得到最终的 Feature Map

2.5 多卷积核卷积

如果有多个卷积核时怎么计算呢?当有多个卷积核时,每个卷积核学习到不同的特征,对应产生包含多个 channel 的 Feature Map, 例如下图有两个 filter,所以 output 有两个 channel。

2.6 特征图大小

输出特征图的大小与以下参数息息相关: * size:卷积核/过滤器大小,一般会选择为奇数,比如有1 * 1, 3 * 3, 5 * 5 * padding:零填充的方式 * stride:步长

那计算方法如下图所示:

输入特征图为5x5,卷积核为3x3,外加padding 为1,则其输出尺寸为:

如下图所示:

在tf.keras中卷积核的实现使用

tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid', 
     activation=None
)

主要参数说明如下:

目录
相关文章
|
28天前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
4月前
|
机器学习/深度学习 人工智能 运维
网管不再抓头发:深度学习教你提前发现网络事故
网管不再抓头发:深度学习教你提前发现网络事故
98 2
|
28天前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
1月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
305 11
|
3月前
|
机器学习/深度学习 人工智能 算法
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
255 68
|
1月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
153 0
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
213 7
|
2月前
|
机器学习/深度学习 算法 数据库
基于GoogleNet深度学习网络和GEI步态能量提取的步态识别算法matlab仿真,数据库采用CASIA库
本项目基于GoogleNet深度学习网络与GEI步态能量图提取技术,实现高精度步态识别。采用CASI库训练模型,结合Inception模块多尺度特征提取与GEI图像能量整合,提升识别稳定性与准确率,适用于智能安防、身份验证等领域。
|
4月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。

热门文章

最新文章