1 深度学习简介
在介绍深度学习之前,我们先看下这幅图:人工智能>机器学习>深度学习
深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:
传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法自动提取特征,这也是深度学习被看做黑盒子,可解释性差的原因。
随着计算机软硬件的飞速发展,现阶段通过拥有众多层数神经网络(Neural Network)来模拟人脑来解释数据,包括图像,文本,音频等内容。目前来看常用的神经网络包括:
卷积神经网络(Convolutional Neural Network)
循环神经网络(Recurrent Neural Network)
生成对抗网络(Generative Adversarial Networks)
**深度强化学习(Deep Reinforcement Learning)**等。
2 神经网络介绍
人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的 计算模型。人脑可以看做是一个生物神经网络,由众多的神经元连接而成。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。下图是生物神经元示意图:
那怎么构建人工神经网络中的神经元呢?
受生物神经元的启发,人工神经元接收来自其他神经元或外部源的输入,每个输入都有一个相关的权值(w),它是根据该输入对当前神经元的重要性来确定的,对该输入加权并与其他输入求和后,经过一个激活函数f,计算得到该神经元的输出。
那接下来我们就利用神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个强度,如下图所示:
神经网络中信息只向一个方向移动,即从输入节点向前移动,通过隐藏节点,再向输出节点移动,网络中没有循环或者环。其中的基本构件是:
输入层:即输入x的那一层
输出层:即输出y的那一层
隐藏层:输入层和输出层之间都是隐藏层
特点是:
同一层的神经元之间没有连接。
第N层的每个神经元和第N-1层的所有神经元相连(这就是full connected的含义),第N-1层神经元的输出就是第N层神经元的输入。
每个连接都有一个权值。