机器学习集成学习进阶Xgboost算法案例分析 1

简介: 机器学习集成学习进阶Xgboost算法案例分析

1 xgboost算法api介绍

1.1 xgboost的安装

官网链接:https://xgboost.readthedocs.io/en/latest/

pip3 install xgboost

2 xgboost参数介绍

xgboost虽然被称为kaggle比赛神奇,但是,我们要想训练出不错的模型,必须要给参数传递合适的值。

xgboost中封装了很多参数,主要由三种类型构成:通用参数(general parameters),Booster 参数(booster parameters)和学习目标参数(task parameters)

  • 通用参数:主要是宏观函数控制;
  • Booster参数:取决于选择的Booster类型,用于控制每一步的booster(tree, regressiong)
  • 学习目标参数:控制训练目标的表现

2.1 通用参数(general parameters)

  1. booster [缺省值=gbtree]
  1. 决定使用哪个booster,可以是gbtree,gblinear或者dart。
  • gbtree和dart使用基于树的模型(dart 主要多了 Dropout),而gblinear 使用线性函数.
  1. silent[缺省值=0]
  • 设置为0打印运行信息;设置为1静默模式,不打印
  1. nthread[缺省值=设置为最大可能的线程数]
  • 并行运行xgboost的线程数,输入的参数应该<=系统的CPU核心数,若是没有设置算法会检测将其设置为CPU的全部核心数

下面的两个参数不需要设置,使用默认的就好了

  1. num_pbuffer[xgboost自动设置,不需要用户设置]
  • 预测结果缓存大小,通常设置为训练实例的个数。该缓存用于保存最后boosting操作的预测结果。
  1. num_feature[xgboost自动设置,不需要用户设置]
  • 在boosting中使用特征的维度,设置为特征的最大维度

2.2 Booster 参数(booster parameters)

2.2.1 Parameters for Tree Booster

eta [缺省值=0.3,别名:learning_rate]

更新中减少的步长来防止过拟合。

在每次boosting之后,可以直接获得新的特征权值,这样可以使得boosting更加鲁棒。

范围: [0,1]

gamma [缺省值=0,别名: min_split_loss](分裂最小loss)

在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。

Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。

范围: [0,∞]

max_depth [缺省值=6]

这个值为树的最大深度。 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。设置为0代表没有限制

范围: [0,∞]

min_child_weight [缺省值=1]

决定最小叶子节点样本权重和。XGBoost的这个参数是最小样本权重的和.

当它的值较大时,可以避免模型学习到局部的特殊样本。 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。.

范围: [0,∞]

subsample [缺省值=1]

这个参数控制对于每棵树,随机采样的比例。

减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。

典型值:0.5-1,0.5代表平均采样,防止过拟合.

范围: (0,1]

colsample_bytree [缺省值=1]

用来控制每棵随机采样的列数的占比(每一列是一个特征)。

典型值:0.5-1

范围: (0,1]

colsample_bylevel [缺省值=1]

用来控制树的每一级的每一次分裂,对列数的采样的占比。

我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。

范围: (0,1]

lambda [缺省值=1,别名: reg_lambda]

权重的L2正则化项(和Ridge regression类似)。

这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数

在减少过拟合上还是可以挖掘出更多用处的。.

alpha [缺省值=0,别名: reg_alpha]

权重的L1正则化项。(和Lasso regression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。

scale_pos_weight[缺省值=1]

在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。通常可以将其设置为负

样本的数目与正样本数目的比值。

2.2.2 Parameters for Linear Booster

linear booster一般很少用到。


lambda [缺省值=0,别称: reg_lambda]

L2正则化惩罚系数,增加该值会使得模型更加保守。

alpha [缺省值=0,别称: reg_alpha]

L1正则化惩罚系数,增加该值会使得模型更加保守。

lambda_bias [缺省值=0,别称: reg_lambda_bias]

偏置上的L2正则化(没有在L1上加偏置,因为并不重要)

2.3 学习目标参数(task parameters)

objective [缺省值=reg:linear]


“reg:linear” – 线性回归

“reg:logistic” – 逻辑回归

“binary:logistic” – 二分类逻辑回归,输出为概率

“multi:softmax” – 使用softmax的多分类器,返回预测的类别(不是概率)。在这种情况下,你还需要多设一个参数:num_class(类别数目)

“multi:softprob” – 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。

eval_metric [缺省值=通过目标函数选择]


可供选择的如下所示:


“rmse”: 均方根误差


“mae”: 平均绝对值误差


“logloss”: 负对数似然函数值



error”

二分类错误率。

其值通过错误分类数目与全部分类数目比值得到。对于预测,预测值大于0.5被认为是正类,其它归为负类。

“error@t”: 不同的划分阈值可以通过 ‘t’进行设置


“merror”: 多分类错误率,计算公式为(wrong cases)/(all cases)


“mlogloss”: 多分类log损失


“auc”: 曲线下的面积


seed [缺省值=0]


随机数的种子

- 设置它可以复现随机数据的结果,也可以用于调整参数

3 xgboost案例介绍

3.1 案例背景

该案例和前面决策树中所用案例一样。


泰坦尼克号沉没是历史上最臭名昭着的沉船事件之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。 造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管幸存下沉有一些运气因素,但有些人比其他人更容易生存,例如妇女,儿童和上流社会。 在这个案例中,我们要求您完成对哪些人可能存活的分析。特别是,我们要求您运用机器学习工具来预测哪些乘客幸免于悲剧。


案例:https://www.kaggle.com/c/titanic/overview


我们提取到的数据集中的特征包括票的类别,是否存活,乘坐班次,年龄,登陆home.dest,房间,船和性别等。


数据:http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt


08e1ec00bf2832b816fb513d9b3e7560.jpg


经过观察数据得到:


1 乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。

2 其中age数据存在缺失。

3.2 步骤分析

1.获取数据

2.数据基本处理

2.1 确定特征值,目标值

2.2 缺失值处理

2.3 数据集划分

3.特征工程(字典特征抽取)

4.机器学习(xgboost)

5.模型评估

3.3 代码实现

导入需要的模块

import pandas as pd
import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split

1.获取数据

# 1、获取数据
titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

2.数据基本处理

2.1 确定特征值,目标值

x = titan[["pclass", "age", "sex"]]
y = titan["survived"]

2.2 缺失值处理

# 缺失值需要处理,将特征当中有类别的这些特征进行字典特征抽取
x['age'].fillna(x['age'].mean(), inplace=True)

2.3 数据集划分

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

3.特征工程(字典特征抽取)

特征中出现类别符号,需要进行one-hot编码处理(DictVectorizer)


x.to_dict(orient=“records”) 需要将数组特征转换成字典数据

# 对于x转换成字典数据x.to_dict(orient="records")
# [{"pclass": "1st", "age": 29.00, "sex": "female"}, {}]
transfer = DictVectorizer(sparse=False)
x_train = transfer.fit_transform(x_train.to_dict(orient="records"))
x_test = transfer.fit_transform(x_test.to_dict(orient="records"))

4.xgboost模型训练和模型评估

# 模型初步训练
from xgboost import XGBClassifier
xg = XGBClassifier()
xg.fit(x_train, y_train)
xg.score(x_test, y_test)
# 针对max_depth进行模型调优
depth_range = range(10)
score = []
for i in depth_range:
    xg = XGBClassifier(eta=1, gamma=0, max_depth=i)
    xg.fit(x_train, y_train)
    s = xg.score(x_test, y_test)
    print(s)
    score.append(s)
# 结果可视化
import matplotlib.pyplot as plt
plt.plot(depth_range, score)
plt.show()


3289c63aa9625008f32385bf6fa49af5.jpg

目录
相关文章
|
10天前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
77 3
|
4月前
|
机器学习/深度学习 边缘计算 算法
NOMA和OFDMA优化算法分析
NOMA和OFDMA优化算法分析
245 127
|
6月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
260 4
|
3月前
|
人工智能 自然语言处理 算法
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。
|
5月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
6月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
149 14
|
Java Maven Docker
gitlab-ci 集成 k3s 部署spring boot 应用
gitlab-ci 集成 k3s 部署spring boot 应用
|
11月前
|
消息中间件 监控 Java
您是否已集成 Spring Boot 与 ActiveMQ?
您是否已集成 Spring Boot 与 ActiveMQ?
324 0
|
监控 druid Java
spring boot 集成配置阿里 Druid监控配置
spring boot 集成配置阿里 Druid监控配置
970 6
|
Java 关系型数据库 MySQL
如何实现Springboot+camunda+mysql的集成
【7月更文挑战第2天】集成Spring Boot、Camunda和MySQL的简要步骤: 1. 初始化Spring Boot项目,添加Camunda和MySQL驱动依赖。 2. 配置`application.properties`,包括数据库URL、用户名和密码。 3. 设置Camunda引擎属性,指定数据源。 4. 引入流程定义文件(如`.bpmn`)。 5. 创建服务处理流程操作,创建控制器接收请求。 6. Camunda自动在数据库创建表结构。 7. 启动应用,测试流程启动,如通过服务和控制器开始流程实例。 示例代码包括服务类启动流程实例及控制器接口。实际集成需按业务需求调整。
864 4

热门文章

最新文章