机器学习逻辑回归分类评估方法

简介: 机器学习逻辑回归分类评估方法

1 分类评估方法

1.1 精确率与召回率

1.1.1 混淆矩阵

在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)

1.1.2 精确率与召回率

  • 精确率(Precision):预测结果为正例样本中真实为正例的比例(了解)

  • 召回率(Recall):真实为正例的样本中预测结果为正例的比例(查得全,对正样本的区分能力)

1.2 F1-score

还有其他的评估标准,F1-score,反映了模型的稳健型


1.3 分类评估报告api


sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )

  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • labels:指定类别对应的数字
  • target_names:目标类别名称
  • return:每个类别精确率与召回率
ret = classification_report(y_test, y_predict, labels=(2,4), target_names=("良性", "恶性"))
print(ret)

假设这样一个情况,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%但是这样效果并不好,这就是样本不均衡下的评估问题

问题:如何衡量样本不均衡下的评估

2 ROC曲线与AUC指标

2.1 TPR与FPR

  • TPR = TP / (TP + FN)
  • 所有真实类别为1的样本中,预测类别为1的比例
  • FPR = FP / (FP + TN)
  • 所有真实类别为0的样本中,预测类别为1的比例

2.2 ROC曲线

  • ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5

2.3 AUC指标

  • AUC的概率意义是随机取一对正负样本,正样本得分大于负样本得分的概率
  • AUC的范围在[0, 1]之间,并且越接近1越好,越接近0.5属于乱猜
  • AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

2.4 AUC计算API

  • from sklearn.metrics import roc_auc_score
  • sklearn.metrics.roc_auc_score(y_true, y_score)
  • 计算ROC曲线面积,即AUC值
  • y_true:每个样本的真实类别,必须为0(反例),1(正例)标记

y_score:预测得分,可以是正类的估计概率、置信值或者分类器方法的返回值

# 0.5~1之间,越接近于1约好
y_test = np.where(y_test > 2.5, 1, 0)
print("AUC指标:", roc_auc_score(y_test, y_predict)
  • AUC只能用来评价二分类
  • AUC非常适合评价样本不平衡中的分类器性能

2.5 小结

  • 混淆矩阵【了解】
  • 真正例(TP)
  • 伪反例(FN)
  • 伪正例(FP)
  • 真反例(TN)
  • 精确率(Precision)与召回率(Recall)【知道】
  • 准确率:(对不对)
  • (TP+TN)/(TP+TN+FN+FP)
  • 精确率 – 查的准不准
  • TP/(TP+FP)
  • 召回率 – 查的全不全
  • TP/(TP+FN)
  • F1-score
  • 反映模型的稳健性
  • roc曲线和auc指标【知道】
  • roc曲线
  • 通过tpr和fpr来进行图形绘制,然后绘制之后,行成一个指标auc
  • auc
  • 越接近1,效果越好
  • 越接近0,效果越差
  • 越接近0.5,效果就是胡说
  • 注意:
  • 这个指标主要用于评价不平衡的二分类问题

3 ROC曲线的绘制

关于ROC曲线的绘制过程,通过以下举例进行说明

假设有6次展示记录,有两次被点击了,得到一个展示序列(1:1,2:0,3:1,4:0,5:0,6:0),前面的表示序号,后面的表示点击(1)或没有点击(0)。

然后在这6次展示的时候都通过model算出了点击的概率序列。

下面看三种情况。

3.1 曲线绘制

3.1.1 序列一曲线绘制

如果概率的序列是(1:0.9,2:0.7,3:0.8,4:0.6,5:0.5,6:0.4)。

与原来的序列一起,得到序列(从概率从高到低排)

1 1 0 0 0 0
0.9 0.8 0.7 0.6 0.5 0.4

绘制的步骤是:

  • 1)把概率序列从高到低排序,得到顺序(1:0.9,3:0.8,2:0.7,4:0.6,5:0.5,6:0.4);
  • 2)从概率最大开始取一个点作为正类,取到点1,计算得到TPR=0.5,FPR=0.0;
  • 3)从概率最大开始,再取一个点作为正类,取到点3,计算得到TPR=1.0,FPR=0.0;
  • 4)再从最大开始取一个点作为正类,取到点2,计算得到TPR=1.0,FPR=0.25;
  • 5)以此类推,得到6对TPR和FPR。

然后把这6对数据组成6个点(0,0.5),(0,1.0),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。

这6个点在二维坐标系中能绘出来。

看看图中,那个就是ROC曲线。

3.1.2 序列二曲线绘制

如果概率的序列是(1:0.9,2:0.8,3:0.7,4:0.6,5:0.5,6:0.4)

与原来的序列一起,得到序列(从概率从高到低排)

1 0 1 0 0 0
0.9 0.8 0.7 0.6 0.5 0.4

绘制的步骤是:

  • 1)把概率序列从高到低排序,得到顺序(1:0.9,2:0.8,3:0.7,4:0.6,5:0.5,6:0.4);
  • 2)从概率最大开始取一个点作为正类,取到点1,计算得到TPR=0.5,FPR=0.0;
  • 3)从概率最大开始,再取一个点作为正类,取到点2,计算得到TPR=0.5,FPR=0.25;
  • 4)再从最大开始取一个点作为正类,取到点3,计算得到TPR=1.0,FPR=0.25;
  • 5)以此类推,得到6对TPR和FPR。

然后把这6对数据组成6个点(0,0.5),(0.25,0.5),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。

这6个点在二维坐标系中能绘出来。

看看图中,那个就是ROC曲线。

3.1.3 序列三曲线绘制

如果概率的序列是(1:0.4,2:0.6,3:0.5,4:0.7,5:0.8,6:0.9)

与原来的序列一起,得到序列(从概率从高到低排)

0 0 0 0 1 1
0.9 0.8 0.7 0.6 0.5 0.4

绘制的步骤是:

  • 1)把概率序列从高到低排序,得到顺序(6:0.9,5:0.8,4:0.7,2:0.6,3:0.5,1:0.4);
  • 2)从概率最大开始取一个点作为正类,取到点6,计算得到TPR=0.0,FPR=0.25;
  • 3)从概率最大开始,再取一个点作为正类,取到点5,计算得到TPR=0.0,FPR=0.5;
  • 4)再从最大开始取一个点作为正类,取到点4,计算得到TPR=0.0,FPR=0.75;
  • 5)以此类推,得到6对TPR和FPR。

然后把这6对数据组成6个点(0.25,0.0),(0.5,0.0),(0.75,0.0),(1.0,0.0),(1.0,0.5),(1.0,1.0)。

这6个点在二维坐标系中能绘出来。

看看图中,那个就是ROC曲线。

3.2 意义解释

如上图的例子,总共6个点,2个正样本,4个负样本,取一个正样本和一个负样本的情况总共有8种。

上面的第一种情况,从上往下取,无论怎么取,正样本的概率总在负样本之上,所以分对的概率为1,AUC=1。再看那个ROC曲线,它的积分是什么?也是1,ROC曲线的积分与AUC相等。

上面第二种情况,如果取到了样本2和3,那就分错了,其他情况都分对了;所以分对的概率是0.875,AUC=0.875。再看那个ROC曲线,它的积分也是0.875,ROC曲线的积分与AUC相等。

上面的第三种情况,无论怎么取,都是分错的,所以分对的概率是0,AUC=0.0。再看ROC曲线,它的积分也是0.0,ROC曲线的积分与AUC相等。

很牛吧,其实AUC的意思是——Area Under roc Curve,就是ROC曲线的积分,也是ROC曲线下面的面积。

绘制ROC曲线的意义很明显,不断地把可能分错的情况扣除掉,从概率最高往下取的点,每有一个是负样本,就会导致分错排在它下面的所有正样本,所以要把它下面的正样本数扣除掉(1-TPR,剩下的正样本的比例)。总的ROC曲线绘制出来了,AUC就定了,分对的概率也能求出来了。

3.3 小结

  • ROC曲线的绘制【知道】
  • 1.构建模型,把模型的概率值从大到小进行排序
  • 2.从概率最大的点开始取值,一直进行tpr和fpr的计算,然后构建整体模型,得到结果
  • 3.其实就是在求解积分(面积)
目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
331 8
|
11月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
422 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1290 6
|
机器学习/深度学习 数据采集 算法
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
本文围绕 Java 大数据机器学习模型在金融衍生品定价中的应用展开,分析定价现状与挑战,阐述技术原理与应用,结合真实案例与代码给出实操方案,助力提升金融衍生品定价的准确性与效率。
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
|
9月前
|
人工智能 JSON 自然语言处理
如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
阿里云人工智能平台 PAI 推出 PAI-Judge 裁判员大模型,为用户构建符合应用场景的多维度、细粒度的评测体系,支持单模型评测和双模型竞技两种模式,允许用户自定义参数,实现准确、灵活、高效的模型自动化评测,为模型迭代优化提供数据支撑。 相比通用大模型尤其在回答确定性/数学类问题、角色扮演、创意文体写作、翻译等场景下,PAI-Judge 系列模型表现优异,可以直接用于大模型的评估与质检。
|
11月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
2123 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
728 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
629 8
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
462 6
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
324 1

热门文章

最新文章