Python史上最全种类数据库操作方法,你能想到的数据库类型都在里面!甚至还有云数据库!1

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: Python史上最全种类数据库操作方法,你能想到的数据库类型都在里面!甚至还有云数据库!

本文将详细探讨如何在Python中连接全种类数据库以及实现相应的CRUD(创建,读取,更新,删除)操作。我们将逐一解析连接MySQL,SQL Server,Oracle,PostgreSQL,MongoDB,SQLite,DB2,Redis,Cassandra,Microsoft Access,ElasticSearch,Neo4j,InfluxDB,Snowflake,Amazon DynamoDB,Microsoft Azure CosMos DB数据库的方法,并演示相应的CRUD操作。

MySQL

连接数据库

Python可以使用mysql-connector-python库连接MySQL数据库:

import mysql.connector
conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
print("Opened MySQL database successfully")
conn.close()

CRUD操作

接下来,我们将展示在MySQL中如何进行基本的CRUD操作。

创建(Create)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("CREATE TABLE Employees (ID INT PRIMARY KEY NOT NULL, NAME TEXT NOT NULL, AGE INT, ADDRESS CHAR(50), SALARY REAL)")
print("Table created successfully")
conn.close()

读取(Retrieve)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

删除(Delete)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

SQL Server

连接数据库

Python可以使用pyodbc库连接SQL Server数据库:

import pyodbc
conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
print("Opened SQL Server database successfully")
conn.close()

CRUD操作

接下来,我们将展示在SQL Server中如何进行基本的CRUD操作。

创建(Create)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("CREATE TABLE Employees (ID INT PRIMARY KEY NOT NULL, NAME VARCHAR(20) NOT NULL, AGE INT, ADDRESS CHAR(50), SALARY REAL)")
conn.commit()
print("Table created successfully")
conn.close()

读取(Retrieve)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

删除(Delete)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

Oracle

连接数据库

Python可以使用cx_Oracle库连接Oracle数据库:

import cx_Oracle
dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
print("Opened Oracle database successfully")
conn.close()

CRUD操作

接下来,我们将展示在Oracle中如何进行基本的CRUD操作。

创建(Create)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("CREATE TABLE Employees (ID NUMBER(10) NOT NULL PRIMARY KEY, NAME VARCHAR2(20) NOT NULL, AGE NUMBER(3), ADDRESS CHAR(50), SALARY NUMBER(10, 2))")
conn.commit()
print("Table created successfully")
conn.close()

读取(Retrieve)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

删除(Delete)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

PostgreSQL

连接数据库

Python可以使用psycopg2库连接PostgreSQL数据库:

import psycopg2
conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
print("Opened PostgreSQL database successfully")
conn.close()

CRUD操作

接下来,我们将展示在PostgreSQL中如何进行基本的CRUD操作。

创建(Create)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute('''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           TEXT    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         REAL);''')
conn.commit()
print("Table created successfully")
conn.close()

读取(Retrieve)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

删除(Delete)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

MongoDB

连接数据库

Python可以使用pymongo库连接MongoDB数据库:

from pymongo import MongoClient
client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
print("Opened MongoDB database successfully")
client.close()

CRUD操作

接下来,我们将展示在MongoDB中如何进行基本的CRUD操作。

创建(Create)

在MongoDB中,文档的创建操作通常包含在插入操作中:

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
employee = {"id": "1", "name": "John", "age": "30", "address": "New York", "salary": "1000.00"}
employees.insert_one(employee)
print("Document inserted successfully")
client.close()

读取(Retrieve)

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
cursor = employees.find()
for document in cursor:
    print(document)
client.close()

更新(Update)

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
query = { "id": "1" }
new_values = { "$set": { "salary": "25000.00" } }
employees.update_one(query, new_values)
print("Document updated successfully")
client.close()

删除(Delete)

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
query = { "id": "1" }
employees.delete_one(query)
print("Document deleted successfully")
client.close()

SQLite

连接数据库

Python使用sqlite3库连接SQLite数据库:

import sqlite3
conn = sqlite3.connect('my_database.db')
print("Opened SQLite database successfully")
conn.close()

CRUD操作

接下来,我们将展示在SQLite中如何进行基本的CRUD操作。

创建(Create)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute('''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           TEXT    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         REAL);''')
conn.commit()
print("Table created successfully")
conn.close()

读取(Retrieve)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

删除(Delete)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

DB2

连接数据库

Python可以使用ibm_db库连接DB2数据库:

import ibm_db
dsn = (
    "DRIVER={{IBM DB2 ODBC DRIVER}};"
    "DATABASE=my_database;"
    "HOSTNAME=127.0.0.1;"
    "PORT=50000;"
    "PROTOCOL=TCPIP;"
    "UID=username;"
    "PWD=password;"
)
conn = ibm_db.connect(dsn, "", "")
print("Opened DB2 database successfully")
ibm_db.close(conn)

CRUD操作

接下来,我们将展示在DB2中如何进行基本的CRUD操作。

创建(Create)

conn = ibm_db.connect(dsn, "", "")
sql = '''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           VARCHAR(20)    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         DECIMAL(9, 2));'''
stmt = ibm_db.exec_immediate(conn, sql)
print("Table created successfully")
ibm_db.close(conn)

读取(Retrieve)

conn = ibm_db.connect(dsn, "", "")
sql = "SELECT id, name, address, salary from Employees"
stmt = ibm_db.exec_immediate(conn, sql)
while ibm_db.fetch_row(stmt):
    print("ID = ", ibm_db.result(stmt, "ID"))
    print("NAME = ", ibm_db.result(stmt, "NAME"))
    print("ADDRESS = ", ibm_db.result(stmt, "ADDRESS"))
    print("SALARY = ", ibm_db.result(stmt, "SALARY"))
ibm_db.close(conn)

更新(Update)

conn = ibm_db.connect(dsn, "", "")
sql = "UPDATE Employees set SALARY = 25000.00 where ID = 1"
stmt = ibm_db.exec_immediate(conn, sql)
ibm_db.commit(conn)
print("Total number of rows updated :", ibm_db.num_rows(stmt))
ibm_db.close(conn)

删除(Delete)

conn = ibm_db.connect(dsn, "", "")
sql = "DELETE from Employees where ID = 1"
stmt = ibm_db.exec_immediate(conn, sql)
ibm_db.commit(conn)
print("Total number of rows deleted :", ibm_db.num_rows(stmt))
ibm_db.close(conn)

Microsoft Access

连接数据库

Python可以使用pyodbc库连接Microsoft Access数据库:

import pyodbc
conn_str = (
    r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};'
    r'DBQ=path_to_your_access_file.accdb;'
)
conn = pyodbc.connect(conn_str)
print("Opened Access database successfully")
conn.close()

CRUD操作

接下来,我们将展示在Access中如何进行基本的CRUD操作。

创建(Create)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute('''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           TEXT    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         DECIMAL(9, 2));''')
conn.commit()
print("Table created successfully")
conn.close()

读取(Retrieve)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

删除(Delete)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()
目录
相关文章
|
5月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
7月前
|
人工智能 运维 关系型数据库
数据库运维:mysql 数据库迁移方法-mysqldump
本文介绍了MySQL数据库迁移的方法与技巧,重点探讨了数据量大小对迁移方式的影响。对于10GB以下的小型数据库,推荐使用mysqldump进行逻辑导出和source导入;10GB以上可考虑mydumper与myloader工具;100GB以上则建议物理迁移。文中还提供了统计数据库及表空间大小的SQL语句,并讲解了如何使用mysqldump导出存储过程、函数和数据结构。通过结合实际应用场景选择合适的工具与方法,可实现高效的数据迁移。
1258 1
|
4月前
|
弹性计算 关系型数据库 数据库
云数据库RDS数据库迁移上云
阿里云RDS是一种安全稳定、高性价比的在线数据库服务,支持弹性伸缩,帮助用户轻松部署与扩展数据库。提供实例创建、白名单设置、数据库与账号管理、便捷连接等功能,简化运维操作,保障数据安全。
|
10月前
|
数据库
【YashanDB知识库】数据库一主一备部署及一主两备部署时,主备手动切换方法及自动切换配置
【YashanDB知识库】数据库一主一备部署及一主两备部署时,主备手动切换方法及自动切换配置
【YashanDB知识库】数据库一主一备部署及一主两备部署时,主备手动切换方法及自动切换配置
|
5月前
|
存储 关系型数据库 MySQL
MySQL数据库中进行日期比较的多种方法介绍。
以上方法提供了灵活多样地处理和对比MySQL数据库中存储地不同格式地日子信息方式。根据实际需求选择适当方式能够有效执行所需操作并保证性能优化。
554 10
|
6月前
|
SQL Oracle 关系型数据库
比较MySQL和Oracle数据库系统,特别是在进行分页查询的方法上的不同
两者的性能差异将取决于数据量大小、索引优化、查询设计以及具体版本的数据库服务器。考虑硬件资源、数据库设计和具体需求对于实现优化的分页查询至关重要。开发者和数据库管理员需要根据自身使用的具体数据库系统版本和环境,选择最合适的分页机制,并进行必要的性能调优来满足应用需求。
320 11
|
8月前
|
存储 算法 Java
实现不同数据库的表间的 JOIN 运算的极简方法
跨库计算是数据分析中的常见难题,尤其涉及多数据库系统时,表间 JOIN 操作复杂度显著提升。esProc 提供了一种高效解决方案,能够简化跨库 JOIN 的实现。例如,在车辆管理、交管和公民信息系统中,通过 esProc 可轻松完成如下任务:按城市统计有车公民事件数量、找出近一年获表彰的车主信息,以及按年份和品牌统计车辆违章次数。esProc 支持不同关联场景(如维表关联与主子表关联)的优化算法,如内存索引、游标处理和有序归并,从而大幅提升编码和运算效率。无论是同构还是异构数据源,esProc 均能灵活应对,为复杂数据分析提供强大支持。
|
9月前
|
Oracle 安全 关系型数据库
【Oracle】使用Navicat Premium连接Oracle数据库两种方法
以上就是两种使用Navicat Premium连接Oracle数据库的方法介绍,希望对你有所帮助!
1870 28
|
9月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
10月前
|
SQL 数据库连接 Linux
数据库编程:在PHP环境下使用SQL Server的方法。
看看你吧,就像一个调皮的小丑鱼在一片广阔的数据库海洋中游弋,一路上吞下大小数据如同海中的珍珠。不管有多少难关,只要记住这个流程,剩下的就只是探索未知的乐趣,沉浸在这个充满挑战的数据库海洋中。
280 16

推荐镜像

更多