Python机器学习框架介绍

简介: Python机器学习框架介绍

1 为什么选择用Python

大家有没有想过,为什么Python不知不觉中成了最流行的机器学习语言之一?


随着人工智能技术的发展与普及,Python超越了许多其他编程语言,成为了机器学习领域中最热门最常用的编程语言之一。有许多原因致使Python在众多开发者中如此受追捧,其中之一便是其拥有大量的与机器学习相关的开源框架以及工具库。根据http://builtwith.com的数据显示,45%的科技公司都倾向于使用Python作为人工智能与机器学习领域的编程语言。

e362f0d849184561b5a4d2664f29be4d.png

简单说:Python是一种很简洁的语言,容易写、容易读,而且在机器学习方面有独特的优势。


使Python如此受欢迎主要由于:


1.Python从设计之初就是为效率而生,以使项目从开发到部署再在运维都能保持较高的生产力;

2.社区有大量的基于Python的开源框架及工具库;

3.Python易于上手,可以说是编程小白的福音;

4.相比起C、Java、C++来讲,Python的语法更简单,更高级,只需要更少行数的代码便能实现其他编程


语言同样的功能;

Python的跨平台能力;

正是由于Python简单易用以及高开发效率,吸引了大量的开发者为其创建更多新的机器学习工具库;而


又因为大量的机器学习工具库的出现,使得Python在机器学习领域变得如此流行。


2 机器学习和深度学习框架

大家可能听说过机器学习和深度学习“框架”这个名词,这个框架的作用可是很大的。想象一下,有一天老板说:“来,给你们一个任务,用机器学习的方法给咱们这些图片分类。”你们去Google查询了一下,发现这种图片分类任务用卷积神经网络来解决最好。但是你们很疑惑从头开始编写一个卷积神经网络是好做法吗?


Python的机器学习框架,也就是各种Python库,里面包含定义好的数据结构以及很多库函数、方法、模型等(即API)。我们只需要选择一个适合的框架,通过调用其中的API,编写少量代码,就可以快速建立机器学习模型了。为什么刚才的机器学习实战中只用了不到20行代码就能够完成预测加州房价这么“艰巨”的任务?其中最大的秘密就是使用了框架中的API。


良好的框架不仅易于理解,还支持并行化计算(即硬件加速),并能够自动计算微分、链式求导不明觉厉”是吧?不要紧,正因为框架把这些都做了,同学们就无须自己做这些不懂的东西。


下图中,给出了8个机器学习中常用的库。

c497d841f5b04ab7bec0dc3dba56939a.png


8个机器学习常用的库


这8个库,可分为3大类:Pandas和Num Py提供数据结构,支持数学运算;Matplotlib和Seaborn用于数据可视化;后面4个库提供算法,其中的Scikit-learn是机器学习框架, Tesnsor Flow、Keras和Py Torch则是深度学习框架,可以选择一个来用。另有一些曾经有影响力的框架,如Theano、Caffe、CNTK等,随着“江山代有才人出”,使用率已经大大下降。而新的更方便的库呢?那也一定会继续涌现。


2.1 Pandas

https://pandas.pydata.org/


60fe9afe28f84c28a5b57ff481620cec.png


Pandas是一个Python机器学习库,Pandas是基于Numpy的一种工具,它提供了各种高级的工具用于进行数据分析。其中一项了不起的功能便是它可以用一两行代码就能实现复杂的数据操作。Pandas有许多内置的方法用于分组统计、合并数据、数据筛选、以及时间序列操作。所有的这些操作都有出色的性能表现。因此,使用Pandas通常用于数据挖掘任务。


2.2 Num Py

b28f8bb0e848463889b69baee150090a.png


Numpy是公认的最受欢迎的Python机器学习库之一。Tensorflow以及其他的一些框架内部都使用了Numpy来对张量进行多种操作。数组接口是Numpy最佳及最重要的功能。这个接口可以用于把图像、音频、以及其他二进制流数据表示为多维实数数组。为了把这个库应用到机器学习中,掌握Numpy的操作对于开发者而言意义重大。


与Pandas的区别:

Numpy提供了用于多维数组的对象,而Pandas能够提供称为DataFrame的内存中二维表对象·;Pandas模块主要处理表格数据,而Numpy模块处理数字数据;与Pandas对比,Numpy消耗更少的内存。


2.3 Matplotlib


d56a0a246e3f43eb8e4251b690e6bea1.png62ba2001e18c4250bdf24795c6ab98b6.png

Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。


Matplotlib 可以用来绘制各种静态,动态,交互式的图表。


Matplotlib 是一个非常强大的 Python 画图工具,我们可以使用该工具将很多数据通过图表的形式更直观的呈现出来。


Matplotlib 可以绘制线图、散点图、等高线图、条形图、柱状图、3D 图形、甚至是图形动画等等。


2.4 Seaborn

Seaborn它基于 Matplotlib,用来制作统计图形的 Python 库。

Seaborn 的优势:


图表丰富,比 matplotlib 易用

与 pandas 结合

支持数值类型多变量关系图

支持数值类型数据分布图

支持类别类型数据可视化

支持回归模型以及可视化

轻松构建结构化多图网格


2.5 Scikit-learn

https://scikit-learn.org.cn/

aaf16004522d4124aff5b6d0b21177ca.png

6d74e818e78e49c9b6a2dc13b1c45485.png


Scikit-learn前面已经用过了。用于预测加州房价的机器学习模型Linear Regression就是直接从那儿“拎”出来的。


它简称Sklearn,是一个相当强大的Python机器学习库,也是简单有效的数据挖掘和数据分析工具。Sklearn基于Num Py、Sci Py和Matplotlib构建,其功能涵盖了从数据预处理到训练模型,再到性能评估的各个方面。


Scikit-learn真的太好用了,它里面包含的大量可以直接使用的机器学习算法,这节省了很多时间。因为不必重复编写算法,更多的精力可以放在问题定义、数据分析、调整参数、模型性能优化等这些具体项目相关的工作上面。


2.6 Tensor Flow

https://tensorflow.google.cn/

b5973a922f9347698bff281ac009dd3b.png

TensorFlow 是谷歌发布的深度学习开源的计算框架,该计算框架可以很好地实现各种深度学习算法,涉及自然语言处理、机器翻译、图像描述、图像分类等一系列技术。


简单来说,TensorFlow 为我们封装了大量机器学习、神经网络的函数,帮助我们高效地解决问题。


2.7 Keras

https://keras.io/zh/


97f53df76f514f90b424e7b1d9db59bc.png

Keras建立在TensorFlow、CNTK或Theano这些后端框架之上。这也就是说,Keras比TensorFlow更高级。在计算机领域,高级是“简单”的代名词。高级意味着易学易用。


Keras才出来没两年时,就已经大受欢迎,到现在已经是除Tensor Flow外最流行的、排行第二位的深度学习框架。


搞机器学习的人,就喜欢简单易用的工具。


其实,写Keras的时候是在对其后端进行调用,相当于还是在Tensor Flow上运行程序,只不过将程序经过Keras中转了一下变成Tensor Flow听得懂的语言,再交给Tensor Flow处理。


2.8 Py Torch

https://pytorch.org/

5c525380a44f4cc0a72b96f28f7d73c6.png

Py Torch是Tensor Flow的竞争对手,也是一个非常“优雅”的机器学习框架。相对Tensor Flow而言,Facebook开发的Py Torch上手相对简单一些,里面所有的算法都是用Python写的,源码也很简洁。近期Py Torch用户量的增长也是相当迅速的。


目录
相关文章
|
19天前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
21天前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
49 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
8天前
|
JSON 安全 中间件
Python Web 框架 FastAPI
FastAPI 是一个现代的 Python Web 框架,专为快速构建 API 和在线应用而设计。它凭借速度、简单性和开发人员友好的特性迅速走红。FastAPI 支持自动文档生成、类型提示、数据验证、异步操作和依赖注入等功能,极大提升了开发效率并减少了错误。安装简单,使用 pip 安装 FastAPI 和 uvicorn 即可开始开发。其优点包括高性能、自动数据验证和身份验证支持,但也存在学习曲线和社区资源相对较少的缺点。
48 15
|
5天前
|
关系型数据库 API 数据库
Python流行orm框架对比
Python中有多个流行的ORM框架,如SQLAlchemy、Django ORM、Peewee、Tortoise ORM、Pony ORM、SQLModel和GINO。每个框架各有特点,适用于不同的项目需求。SQLAlchemy功能强大且灵活,适合复杂项目;Django ORM与Django框架无缝集成,易用性强;Peewee轻量级且简单,适合小型项目;Tortoise ORM专为异步框架设计;Pony ORM查询语法直观;SQLModel结合Pydantic,适合FastAPI;GINO则适合异步环境开发。初学者推荐使用Django ORM或Peewee,因其易学易用。
|
8天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
45 7
|
1月前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
75 7
|
1月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
83 2
|
1月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
2月前
|
缓存 API 数据库
Python哪个框架合适开发速卖通商品详情api?
在跨境电商平台速卖通的商品详情数据获取与整合中,Python 语言及其多种框架(如 Flask、Django、Tornado 和 FastAPI)提供了高效解决方案。Flask 简洁灵活,适合快速开发;Django 功能全面,适用于大型项目;Tornado 性能卓越,擅长处理高并发;FastAPI 结合类型提示和异步编程,开发体验优秀。选择合适的框架需综合考虑项目规模、性能要求和团队技术栈。
35 2
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
59 0