【Spring Cloud系列】 雪花算法原理及实现

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 【Spring Cloud系列】 雪花算法原理及实现

一、概述

分布式高并发的环境下,常见的就是12306节日订票,在大量用户同是抢购一个方向的票,毫秒级的时间下可能生成数万个订单,此时为确保生成订单ID的唯一性变得至关重要。此时秒杀环境下,不仅要保障ID唯一性,还得确保ID生成的优先度。

二、生成ID规则部分硬性要求

  1. 全局唯一:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
  2. 趋势递增:在MySQL的InnoDB引擎中适用的是聚集索引,由于多数RDBMS使用B+Tree的数据结构来存储索引数据,在主键的选择上我们尽量使用有序的主键保证写入性能。
  3. 单调递增:保证下一个ID一定大于上一个ID,如事务版本号、排序等特殊需求。
  4. 信息安全:如果ID是连续的,恶意用户的抓取工作就非常容易,直接按照顺序下载指定URL即可;如果是订单号就危险。
  5. 含有时间戳:生成的ID包含完整的时间戳信息。

三、ID号生成系统可用性要求

  1. 高可用:发一个获取分布式ID的请求,服务器就是保证99.9999%的情况下给我创建一个唯一分布式ID。
  2. 低延迟:发一个获取分布式ID的请求,服务器要快,极速。
  3. 高QPS:如果一次请求10万个分布式ID,服务器要顶住并成功创建10万个分布式ID。

四、解决分布式ID通用方案

4.1 UUID

UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为:8-4-4-4-12的36个字符,示例:1E785B2B-111C-752A-997B-3346E7495CE2;UUID性能非常高,不依赖网络,本地生成。

UUID缺点:

  1. 无序,无法预测它的生成顺序,不能生成递增有序的数字。在MySql官方推荐主键约短越好,UUID是一个32位的字符串,所以不推荐使用。
  2. 索引,B+Tree索引的分裂
    分布式Id是主键,主键是聚簇索引。Mysql的索引是B+Tree来实现的,每次新的UUID数据的插入,为了新的UUID数据的插入,为了查询的优化,都会对索引底部的B+Tree进行修改;因为UUID数据是无序的,所以每一次UUID数据的插入都会对主键的聚簇索引做很大的修改,在做数据Insert时,会插入主键是无序的,会导致一些中间节点的产生分裂,会导致大量不饱和的节点。这样大大降低了数据库插入的性能。

4.2 数据库自增主键

单机

在分布式里面,数据库的自增ID机制的主要原理是:数据库自增ID和MySql数据库的replace into实现的。

Replace into的含义是插入一条纪录,如果表中唯一索引的值遇到冲突,则替换老数据。

在单体应用的时候,自增长ID使用,但是在集群分布式应用中单体应用就不适合。

  1. 系统水平扩展比较困难,比如定义好了增长步长和机器台数之后,在大量添加服务器时,需要重新设置初始值,这样可操作性差,所以系统水平扩展方案复杂度高难以实现。
  2. 数据库压力大,每次获取ID都需要读写一次数据库,非常影响性能,不符合分布式ID里面的延迟低和要高QPS的规则(在高并发下,如果都去数据库里面获取Id,非常影响性能的。)

4.3 基于Redis生成全局id策略

在Redis集群情况下,同样和MySql一样需要设置不同的增长步长,同时key一定要设置有效期。可以使用Redis集群来获取更高的吞吐量。

五、SnowFlake(雪花算法)

而Twitter的SnowFlake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra(由Facebook开发一套开源分布式NoSQL数据库系统) 因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。SnowFlake每秒能产生26万个自增可排序的ID。

5.1 SnowFlake特点

  1. Twitter的SnowFlake生成ID能够按照时间有序生成。
  2. SnowFlake算法生成Id的结果是一个64bit大小的整数,为一个Long型(转换成字符串后长度最多19)。
  3. 分布式系统内不会产生ID碰撞(由datacenter和workerid作为区分)并且效率较高。

5.2 SnowFlake结构

5.3 雪花算法原理

雪花算法的原理就是生成一个的64位比特位的long类型的唯一id

  1. 最高1位固定值0,因为生成的id是正整数,如果是1就是负值。
  2. 紧接着是41位存储毫秒级时间戳,2^41/(1000 * 60 * 24 * 365) = 69 ,大概可以使用69年。
  3. 接下来10位存储机器码,包括5位DataCenterId和5位WorkerId,最多可以部署2^10=1024台机器。
  4. 最后12位存储序列号,同一毫秒时间戳时,通过这个递增的序列号来区分,即对于同一台机器而言,同一毫秒级时间戳下,可以生成2^12=4096个不重复id。

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一id的系统,请求雪花算法服务获取id即可。

对于每一个雪花算法服务,需要先指定10位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者时其他区别标识的10位比特位的整数都行。

5.4 算法实现

package com.goyeer;
import java.util.Date;
/**
 * @ClassName: SnowFlakeUtil
 * @Author: goyeer
 * @Date: 2023/09/09 19:34
 * @Description:
 */
public class SnowFlakeUtil {
    private static SnowFlakeUtil snowFlakeUtil;
    static {
        snowFlakeUtil = new SnowFlakeUtil();
    }
    // 初始时间戳(纪年),可用雪花算法服务上线时间戳的值
    //
    private static final long INIT_EPOCH = 1694263918335L;
    // 时间位取&
    private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;
    // 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断
    private long lastTimeMillis = -1L;
    // dataCenterId占用的位数
    private static final long DATA_CENTER_ID_BITS = 5L;
    // dataCenterId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);
    // dataCenterId
    private long dataCenterId;
    // workId占用的位数
    private static final long WORKER_ID_BITS = 5L;
    // workId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
    // workId
    private long workerId;
    // 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095
    private static final long SEQUENCE_BITS = 12L;
    // 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095
    // 0000000000000000000000000000000000000000000000000000111111111111
    private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);
    // 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095
    private long sequence;
    // workId位需要左移的位数 12
    private static final long WORK_ID_SHIFT = SEQUENCE_BITS;
    // dataCenterId位需要左移的位数 12+5
    private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
    // 时间戳需要左移的位数 12+5+5
    private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;
    /**
     * 无参构造
     */
    public SnowFlakeUtil() {
        this(1, 1);
    }
    /**
     * 有参构造
     * @param dataCenterId
     * @param workerId
     */
    public SnowFlakeUtil(long dataCenterId, long workerId) {
        // 检查dataCenterId的合法值
        if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {
            throw new IllegalArgumentException(
                    String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));
        }
        // 检查workId的合法值
        if (workerId < 0 || workerId > MAX_WORKER_ID) {
            throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }
    /**
     * 获取唯一ID
     * @return
     */
    public static Long getSnowFlakeId() {
        return snowFlakeUtil.nextId();
    }
    /**
     * 通过雪花算法生成下一个id,注意这里使用synchronized同步
     * @return 唯一id
     */
    public synchronized long nextId() {
        long currentTimeMillis = System.currentTimeMillis();
        System.out.println(currentTimeMillis);
        // 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题
        if (currentTimeMillis < lastTimeMillis) {
            throw new RuntimeException(
                    String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,
                            lastTimeMillis));
        }
        if (currentTimeMillis == lastTimeMillis) {
            // 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095
            // 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095
            // 那么就使用新的时间戳
            sequence = (sequence + 1) & SEQUENCE_MASK;
            if (sequence == 0) {
                currentTimeMillis = getNextMillis(lastTimeMillis);
            }
        } else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095
            sequence = 0;
        }
        // 记录最后一次使用的毫秒时间戳
        lastTimeMillis = currentTimeMillis;
        // 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行
        // <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍
        // |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1
        // 优先级:<< > |
        return
                // 时间戳部分
                ((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)
                        // 数据中心部分
                        | (dataCenterId << DATA_CENTER_ID_SHIFT)
                        // 机器表示部分
                        | (workerId << WORK_ID_SHIFT)
                        // 序列号部分
                        | sequence;
    }
    /**
     * 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒
     * @param lastTimeMillis 指定毫秒时间戳
     * @return 时间戳
     */
    private long getNextMillis(long lastTimeMillis) {
        long currentTimeMillis = System.currentTimeMillis();
        while (currentTimeMillis <= lastTimeMillis) {
            currentTimeMillis = System.currentTimeMillis();
        }
        return currentTimeMillis;
    }
    /**
     * 获取随机字符串,length=13
     * @return
     */
    public static String getRandomStr() {
        return Long.toString(getSnowFlakeId());
    }
    /**
     * 从ID中获取时间
     * @param id 由此类生成的ID
     * @return
     */
    public static Date getTimeBySnowFlakeId(long id) {
        return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);
    }
    public static void main(String[] args) {
        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();
        long id = snowFlakeUtil.nextId();
        System.out.println(id);
        Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);
        System.out.println(date);
        long time = date.getTime();
        System.out.println(time);
        System.out.println(getRandomStr());
    }
}

5.4 雪花算法优点

  1. 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
  2. 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
  3. 不依赖第三方库或者中间件。
  4. 算法简单,在内存中进行,效率高。

5.5 雪花算法缺点:

  1. 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。

六、总结

其实雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到 69 年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024 台,那么可将减少的位数补充给机器码用。

注意,雪花算法中 41 位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。

对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
XML Java 开发者
Spring Boot开箱即用可插拔实现过程演练与原理剖析
【11月更文挑战第20天】Spring Boot是一个基于Spring框架的项目,其设计目的是简化Spring应用的初始搭建以及开发过程。Spring Boot通过提供约定优于配置的理念,减少了大量的XML配置和手动设置,使得开发者能够更专注于业务逻辑的实现。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,为开发者提供一个全面的理解。
34 0
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
54 3
|
6天前
|
NoSQL Java Redis
Spring Boot 自动配置机制:从原理到自定义
Spring Boot 的自动配置机制通过 `spring.factories` 文件和 `@EnableAutoConfiguration` 注解,根据类路径中的依赖和条件注解自动配置所需的 Bean,大大简化了开发过程。本文深入探讨了自动配置的原理、条件化配置、自定义自动配置以及实际应用案例,帮助开发者更好地理解和利用这一强大特性。
46 14
|
1月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
19天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
42 3
|
22天前
|
消息中间件 监控 Java
如何将Spring Boot + RabbitMQ应用程序部署到Pivotal Cloud Foundry (PCF)
如何将Spring Boot + RabbitMQ应用程序部署到Pivotal Cloud Foundry (PCF)
31 6
|
22天前
|
Java 关系型数据库 MySQL
如何将Spring Boot + MySQL应用程序部署到Pivotal Cloud Foundry (PCF)
如何将Spring Boot + MySQL应用程序部署到Pivotal Cloud Foundry (PCF)
40 5
|
22天前
|
缓存 监控 Java
如何将Spring Boot应用程序部署到Pivotal Cloud Foundry (PCF)
如何将Spring Boot应用程序部署到Pivotal Cloud Foundry (PCF)
31 5
|
24天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
27天前
|
Java 开发者 Spring
Spring AOP 底层原理技术分享
Spring AOP(面向切面编程)是Spring框架中一个强大的功能,它允许开发者在不修改业务逻辑代码的情况下,增加额外的功能,如日志记录、事务管理等。本文将深入探讨Spring AOP的底层原理,包括其核心概念、实现方式以及如何与Spring框架协同工作。