用于异构无线传感器网络的多聚合器多链路由协议(Matlab代码实现)

简介: 用于异构无线传感器网络的多聚合器多链路由协议(Matlab代码实现)

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在现代科技的不断发展中,无线传感器网络(Wireless Sensor Networks,简称WSN)已经成为了一个重要的研究领域。WSN由大量的无线传感器节点组成,这些节点可以自主地感知环境中的信息并将其传输到目的地。WSN的应用范围非常广泛,包括环境监测、智能交通、农业、医疗等领域。

然而,WSN也面临着一些挑战,其中之一就是异构性。异构无线传感器网络由不同类型的传感器节点组成,这些节点具有不同的能力和特性。例如,某些节点可能具有更高的计算能力和存储能力,而另一些节点可能只能提供基本的感知功能。这种异构性给网络的设计和管理带来了一定的困难。

为了克服异构无线传感器网络中的挑战,研究人员提出了多聚合器多链路由协议(Multi-Aggregator Multi-Path Routing Protocol,简称MAMPR)。MAMPR是一种分层路由协议,它将网络分为多个聚合器区域,并为每个区域选择一个聚合器节点。这些聚合器节点负责收集和聚合来自其所在区域的数据,并将数据传输到网络的其他部分。

MAMPR的设计目标是提高网络的能效和可靠性。为了实现这个目标,MAMPR采用了多路径路由的策略。传统的单路径路由协议容易受到链路中断或节点故障的影响,导致数据传输中断或丢失。而MAMPR通过使用多条路径来传输数据,可以提高数据传输的可靠性和稳定性。

另外,MAMPR还考虑了异构性对网络性能的影响。它根据节点的能力和特性,动态地选择合适的路径和聚合器节点。这样可以充分利用网络中各种类型的节点,提高网络的整体性能。

MAMPR的核心思想是聚合器区域的划分和路径选择。聚合器区域的划分可以根据节点的位置和能力进行,以便实现数据的有效聚合和传输。路径选择则是根据节点的能力和网络拓扑进行的,以确保数据能够按时、可靠地传输到目的地。

总之,多聚合器多链路由协议是一种用于解决异构无线传感器网络挑战的有效方法。它可以提高网络的能效和可靠性,充分利用网络中各种类型的节点,并实现数据的有效聚合和传输。随着无线传感器网络的发展和应用的不断扩大,MAMPR将会发挥越来越重要的作用。我们期待着更多关于MAMPR的研究和应用。

📣 部分代码

function varargout = fig3d(varargin)% FIG3D MATLAB code for fig3d.fig%      FIG3D, by itself, creates a new FIG3D or raises the existing%      singleton*.%%      H = FIG3D returns the handle to a new FIG3D or the handle to%      the existing singleton*.%%      FIG3D('CALLBACK',hObject,eventData,handles,...) calls the local%      function named CALLBACK in FIG3D.M with the given input arguments.%%      FIG3D('Property','Value',...) creates a new FIG3D or raises the%      existing singleton*.  Starting from the left, property value pairs are%      applied to the GUI before fig3d_OpeningFcn gets called.  An%      unrecognized property name or invalid value makes property application%      stop.  All inputs are passed to fig3d_OpeningFcn via varargin.%%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one%      instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help fig3d% Last Modified by GUIDE v2.5 06-Oct-2021 22:13:58% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name',       mfilename, ...    'gui_Singleton',  gui_Singleton, ...    'gui_OpeningFcn', @fig3d_OpeningFcn, ...    'gui_OutputFcn',  @fig3d_OutputFcn, ...    'gui_LayoutFcn',  [] , ...    'gui_Callback',   []);if nargin && ischar(varargin{1})    gui_State.gui_Callback = str2func(varargin{1});endif nargout    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});else    gui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before fig3d is made visible.function fig3d_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject    handle to figure% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% varargin   command line arguments to fig3d (see VARARGIN)% Choose default command line output for fig3dhandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes fig3d wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line.function varargout = fig3d_OutputFcn(hObject, eventdata, handles)% varargout  cell array for returning output args (see VARARGOUT);% hObject    handle to figure% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;global Nf Nresp Xcalname ycalname netname w_s0 ...    decides0 targets lows0 highs0 iplot varp ...    w_s0f decides0f targetsf lows0f highs0f surfi ...    pathname lowsf highsf ...    xplot1I xplot2I DplotI YplotrsI iplotset(gcf,'Name','Plots','ToolBar','Figure','NumberTitle','off',...    'MenuBar','none')set(handles.popupmenu1,'Value',iplot);set(handles.popupmenu2,'Value',varp)set(handles.popupmenu4,'Value',surfi)strdes='Desirability';for i=1:Nresp    strdes=[strdes,['|Response ',int2str(i)]];endset(handles.popupmenu1,'String',strdes)decides=decides0-1;w_s=w_s0;lows=lows0;highs=highs0;decidesf=decides0f-1;w_sf=w_s0f;lowsf=lows0f;highsf=highs0f;xtemp=linspace(-1,1,15)';switch Nf    case 2        xpun=[kron(xtemp,ones(15,1)),kron(ones(15,1),xtemp)];    case 3        xpun=[kron(xtemp,kron(ones(15,1),ones(15,1))),...            kron(ones(15,1),kron(xtemp,ones(15,1))),...            kron(ones(15,1),kron(ones(15,1),xtemp))];    case 4        xpun=[kron(kron(xtemp,kron(ones(15,1),ones(15,1))),ones(15,1)),...            kron(kron(ones(15,1),kron(xtemp,ones(15,1))),ones(15,1)),...            kron(kron(ones(15,1),kron(ones(15,1),xtemp)),ones(15,1)),...            kron(kron(ones(15,1),kron(ones(15,1),ones(15,1))),xtemp)];endgridsearch2Npun=15;a=(Npun+1)/2;b=(Npun-1)/2;xplot=linspace(-1,1,Npun);switch Nf    case 2        imax=a+b*xpun(maxind,:);        Dplot=reshape(Des,15,15);        for i=1:Nresp            eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15);']);            eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);        end        set(handles.popupmenu2,'Visible','off')        xplot1=(xplot*delta1f+MM1f)/2;        xplot2=(xplot*delta2f+MM2f)/2;        xlabel1='Factor 1';        ylabel1='Factor 2';    case 3        imax=a+b*xpun(maxind,:);        Dplot=reshape(Des,15,15,15);        switch varp            case 1                % 1&2                Dplot=squeeze(Dplot(imax(3),:,:));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(imax(3),:,:));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta1f+MM1f)/2;                xplot2=(xplot*delta2f+MM2f)/2;                xlabel1='Factor 1';                ylabel1='Factor 2';            case 2                % 1&3                Dplot=squeeze(Dplot(:,imax(2),:));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(:,imax(2),:));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta1f+MM1f)/2;                xplot2=(xplot*delta3f+MM3f)/2;                xlabel1='Factor 1';                ylabel1='Factor 3';            case 3                % 2&3                Dplot=squeeze(Dplot(:,:,imax(1)));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(:,:,imax(1)));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta2f+MM2f)/2;                xplot2=(xplot*delta3f+MM3f)/2;                xlabel1='Factor 2';                ylabel1='Factor 3';        end        set(handles.popupmenu2,'Visible','on')        set(handles.popupmenu2,'String','Factors 1&2|Factors 1&3|Factors 2&3')    case 4        imax=[a+b*xpun(maxind,:)];        Dplot=reshape(Des,15,15,15,15);        switch varp            case 1                % 1&2                Dplot=squeeze(Dplot(imax(4),imax(3),:,:));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(imax(4),imax(3),:,:));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta1f+MM1f)/2;                xplot2=(xplot*delta2f+MM2f)/2;                xlabel1='Factor 1';                ylabel1='Factor 2';            case 2                % 1&3                Dplot=squeeze(Dplot(imax(4),:,imax(2),:));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(imax(4),:,imax(2),:));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta1f+MM1f)/2;                xplot2=(xplot*delta3f+MM3f)/2;                xlabel1='Factor 1';                ylabel1='Factor 3';            case 4                % 2&3                Dplot=squeeze(Dplot(imax(4),:,:,imax(1)));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(imax(4),:,:,imax(1)));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta2f+MM2f)/2;                xplot2=(xplot*delta3f+MM3f)/2;                xlabel1='Factor 2';                ylabel1='Factor 3';            case 3                % 1&4                Dplot=squeeze(Dplot(:,imax(3),imax(2),:));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(:,imax(3),imax(2),:));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta1f+MM1f)/2;                xplot2=(xplot*delta4f+MM4f)/2;                xlabel1='Factor 1';                ylabel1='Factor 4';            case 5                % 2&4                Dplot=squeeze(Dplot(:,imax(3),:,imax(1)));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(:,imax(3),:,imax(1)));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta2f+MM2f)/2;                xplot2=(xplot*delta4f+MM4f)/2;                xlabel1='Factor 2';                ylabel1='Factor 4';            case 6                % 3&4                Dplot=squeeze(Dplot(:,:,imax(2),imax(1)));                for i=1:Nresp                    eval(['Yplotrs_temp=reshape((Yplot{',int2str(i),'}*deltay',int2str(i),'+MMy',int2str(i),')/2,15,15,15,15);']);                    Yplotrs_temp=squeeze(Yplotrs_temp(:,:,imax(2),imax(1)));                    eval(['Yplotrs{',int2str(i),'}=Yplotrs_temp;']);                end                xplot1=(xplot*delta3f+MM3f)/2;                xplot2=(xplot*delta4f+MM4f)/2;                xlabel1='Factor 3';                ylabel1='Factor 4';        end        set(handles.popupmenu2,'Visible','on')        set(handles.popupmenu2,'String','Factors 1&2|Factors 1&3|Factors 1&4|Factors 2&3|Factors 2&4|Factors 3&4')end% Interpolation[X,Y]=meshgrid(min(xplot1):(max(xplot1)-min(xplot1))/14:max(xplot1),...    min(xplot2):(max(xplot2)-min(xplot2))/14:max(xplot2));[XI,YI]=meshgrid(min(xplot1):(max(xplot1)-min(xplot1))/50:max(xplot1),...    min(xplot2):(max(xplot2)-min(xplot2))/50:max(xplot2));DplotI=interp2(X,Y,Dplot,XI,YI);xplot1I=interp1(min(xplot1):(max(xplot1)-min(xplot1))/14:max(xplot1),...    xplot1,min(xplot1):(max(xplot1)-min(xplot1))/50:max(xplot1));xplot2I=interp1(min(xplot2):(max(xplot2)-min(xplot2))/14:max(xplot2),...    xplot2,min(xplot2):(max(xplot2)-min(xplot2))/50:max(xplot2));for i=1:Nresp    YplotrsI{i}=interp2(X,Y,Yplotrs{i},XI,YI);endif iplot==1    switch surfi        case 1            surf(xplot1I,xplot2I,DplotI,'Linewidth',0.5)            set(gca,'LineWidth',2)        case 2            if sum(Dplot(:))>0                [c,h]=contour(xplot1I,xplot2I,DplotI,20,'Linewidth',2);                clabel(c,h,'labelspacing',300);                set(gca,'LineWidth',2)            else                set(handles.popupmenu4,'Value',1);            end        case 3            if sum(Dplot(:))>0                contourf(xplot1I,xplot2I,DplotI,20,'Linewidth',1);colorbar;                set(gca,'LineWidth',2)            else                set(handles.popupmenu4,'Value',1);            end    end    title('Desirability','Fontsize',14)else    switch surfi        case 1            surf(xplot1I,xplot2I,YplotrsI{iplot-1},'Linewidth',0.5)            set(gca,'LineWidth',2)        case 2            [c,h]=contour(xplot1I,xplot2I,YplotrsI{iplot-1},20,'Linewidth',2);            clabel(c,h,'labelspacing',300);            set(gca,'LineWidth',2)        case 3            [c,h]=contourf(xplot1I,xplot2I,YplotrsI{iplot-1},20,'Linewidth',1);colorbar;            set(gca,'LineWidth',2)    end    title(['Response ',int2str(iplot-1)],'Fontsize',14)endxlabel(xlabel1,'Fontsize',14)ylabel(ylabel1,'Fontsize',14)axis tight% --- Executes during object creation, after setting all properties.function figure1_CreateFcn(hObject, eventdata, handles)% hObject    handle to figure1 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    empty - handles not created until after all CreateFcns called% --- Executes on selection change in popupmenu1.function popupmenu1_Callback(hObject, eventdata, handles)% hObject    handle to popupmenu1 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array%        contents{get(hObject,'Value')} returns selected item from popupmenu1global iplot varpvarp=get(handles.popupmenu2,'Value');iplot=get(hObject,'Value');% status=close(fig3d);% if status==0%     close fig3d% endfig3d% --- Executes during object creation, after setting all properties.function popupmenu1_CreateFcn(hObject, eventdata, handles)% hObject    handle to popupmenu1 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    empty - handles not created until after all CreateFcns called% Hint: popupmenu controls usually have a white background on Windows.%       See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))    set(hObject,'BackgroundColor','white');end% --- Executes on selection change in popupmenu2.function popupmenu2_Callback(hObject, eventdata, handles)% hObject    handle to popupmenu2 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu2 contents as cell array%        contents{get(hObject,'Value')} returns selected item from popupmenu2global varpvarp=get(handles.popupmenu2,'Value');fig3d% --- Executes during object creation, after setting all properties.function popupmenu2_CreateFcn(hObject, eventdata, handles)% hObject    handle to popupmenu2 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    empty - handles not created until after all CreateFcns called% Hint: popupmenu controls usually have a white background on Windows.%       See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))    set(hObject,'BackgroundColor','white');end% --- Executes on selection change in popupmenu3.function popupmenu3_Callback(hObject, eventdata, handles)% hObject    handle to popupmenu3 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu3 contents as cell array%        contents{get(hObject,'Value')} returns selected item from popupmenu3% --- Executes during object creation, after setting all properties.function popupmenu3_CreateFcn(hObject, eventdata, handles)% hObject    handle to popupmenu3 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    empty - handles not created until after all CreateFcns called% Hint: popupmenu controls usually have a white background on Windows.%       See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))    set(hObject,'BackgroundColor','white');end% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)% hObject    handle to pushbutton1 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% --- Executes on selection change in popupmenu4.function popupmenu4_Callback(hObject, eventdata, handles)% hObject    handle to popupmenu4 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu4 contents as cell array%        contents{get(hObject,'Value')} returns selected item from popupmenu4global surfisurfi=get(hObject,'Value');fig3d% --- Executes during object creation, after setting all properties.function popupmenu4_CreateFcn(hObject, eventdata, handles)% hObject    handle to popupmenu4 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    empty - handles not created until after all CreateFcns called% Hint: popupmenu controls usually have a white background on Windows.%       See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))    set(hObject,'BackgroundColor','white');end% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)% hObject    handle to pushbutton2 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)global pathnamewarning offeval(['mkdir ','''',pathname,'temp',''''])prompt={'Enter filename (default: .tiff)'};dlgtitle='Save figure';definput={'Figure'};fina=inputdlg(prompt,dlgtitle,[1 40],definput);eval(['print -dtiff -r200 ''',pathname,'\temp\',fina{1},'.tiff'''])h=msgbox(['Figure saved in directory \temp as ',...    fina{1},'.tiff']);prompt={'Enter filename (default: .txt)'};dlgtitle='Save data';definput={'Data'};% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)% hObject    handle to pushbutton3 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)global pathname xplot1I xplot2I DplotI YplotrsI iplotwarning offeval(['mkdir ','''',pathname,'temp',''''])prompt={'Enter filename (default: .txt)'};dlgtitle='Save data';definput={'Data'};fina=inputdlg(prompt,dlgtitle,[1 40],definput);switch iplot    case 1        dataplot=[xplot1I',xplot2I',DplotI];        eval(['save ''',pathname,'\temp\',fina{1},'.txt''',' dataplot -ascii'])    otherwise        dataplot=[xplot1I',xplot2I',YplotrsI{iplot-1}];        eval(['save ''',pathname,'\temp\',fina{1},'.txt''',' dataplot -ascii'])endh=msgbox(['Data saved in directory \temp as ',...    fina{1},'.txt in format [x axis,y axis,data matrix]']);

⛳️ 运行结果

image.gif编辑

image.gif编辑

🔗 参考文献

image.gif编辑

[1] 胡婷婷.基于异构无线传感器网络的混合路由设计与实现[D].北京交通大学,2015.

[2] 陈玲.异构无线传感器网络非均匀分区多跳路由协议的研究[D].武汉理工大学[2023-09-20].DOI:CNKI:CDMD:2.1015.810664.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合
相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
5月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
204 73
|
4月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
147 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
4月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
133 10
|
5月前
|
安全 C#
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
完成切换网络+修改网络连接图标提示的代码框架
完成切换网络+修改网络连接图标提示的代码框架
|
5月前
|
传感器 监控 物联网
无线传感器网络的基本架构及其广泛应用
无线传感器网络的基本架构及其广泛应用
458 0
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章