1 synchronized场景回顾
目标:
synchronized回顾(锁分类–>多线程)
概念
synchronized:是Java中的关键字,是一种同步锁。
Java中锁分为以下几种:
乐观锁、悲观锁(syn)
独享锁(syn)、共享锁
公平锁、非公平锁(syn)
互斥锁(syn)、读写锁
可重入锁(syn)
分段锁
synchronized JDK1.6锁升级(无锁 -> 偏向锁 (非锁)-> 轻量级锁 -> 重量级锁(1.6前都是)【面试常问】
tips:
为什么用到锁?大家肯定会想到多线程(并发)
接下来,我们一起简单回顾下多线程特性
多线程特性回顾(面试常问)
原子性:指一个操作或者多个操作,要么全部执行并且执行的过程不会被任何因素打断,要么就都不执
行
可见性:是指多个线程访问一个资源时,该资源的状态、值信息等对于其他线程都是可见的。
有序性:指程序中代码的执行顺序 (编译器会重排)
原子性实现回顾
保证了原子性?
com.syn.com.syn.th.SyncAtomicity
package com.syn.com.syn.th; import java.util.concurrent.TimeUnit; /* 目标:测试原子性问题 1、调用正常(不加锁)方法;两个线程都可以正常执行 2、调用加锁方法,只能有一个线程正常执行,其他线程排队等候 */ public class SyncAtomicity { public static void main(String[] args) throws InterruptedException { SyncAtomicity syncAtomicity = new SyncAtomicity(); //synchronized修饰实例方法 //new Thread(()->syncAtomicity.testSYNC()).start(); //new Thread(()->syncAtomicity.testSYNC()).start(); //synchronized修饰静态方法 new Thread(() -> SyncAtomicity.testSYNCForStatic()).start(); new Thread(() -> SyncAtomicity.testSYNCForStatic()).start(); //正常方法 //new Thread(() -> syncAtomicity.test()).start(); //new Thread(() -> syncAtomicity.test()).start(); } //加锁方法 public synchronized void testSYNC() { System.out.println("进入testSYNC方法>>>>>>>>>>>>>>>>>>>>>"); try { //模拟方法体尚未执行完毕 TimeUnit.HOURS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } } //加锁方法 public synchronized static void testSYNCForStatic() { System.out.println("进入testSYNC方法>>>>>>>>>>>>>>>>>>>>>"); try { //模拟方法体尚未执行完毕 TimeUnit.HOURS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } } //正常方法 public void test() { System.out.println("进入test方法>>>>>>>>>>>>>>>>>>>>>"); try { //模拟方法体尚未执行完毕 TimeUnit.HOURS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } } }
总结
我们发现在同一时刻确实只有一个线程进入,保证了原子性
这是什么原理呢?
2 反汇编寻找锁实现原理
目标 通过javap反汇编看一下synchronized到底是怎么加锁的
com.syn.BTest
public class BTest { private static Object object = new Object(); public synchronized void testMethod() { System.out.println("Hello World -synchronized method "); } public static void main(String[] args) { synchronized (object) { System.out.println("Hello World -synchronized block "); } } }
反汇编后,我们将看到什么?
JDK自带的一个工具: javap ,对字节码进行反汇编:
//com.syn.BTest javap -v -c BTest.class
反汇编后
解释
被synchronized修饰的代码块,多了两个指令
monitorenter、monitorexit
即JVM使用monitorenter和monitorexit两个指令实现同步
解释
被synchronized修饰的方法;增加 了ACC_SYNCHRONIZED 修饰。会隐式调用monitorenter和
monitorexit。
monitorenter原理(重要)
monitorenter首先我们来看一下JVM规范中对于monitorenter的描述
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.monitorenter
翻译如下:
每一个对象都会和一个监视器monitor关联。
监视器被占用时会被锁住,其他线程无法来获取该monitor。
当JVM执行某个线程的某个方法内部的monitorenter时,它会尝试去获取当前对象对应的monitor的所有权。其过程如下:
若monior的进入数为0,线程可以进入monitor,并将monitor的进入数置为1。当前线程成为
monitor的owner(所有者)
若线程已拥有monitor的所有权,允许它重入monitor,则进入monitor的进入数加1
若其他线程已经占有monitor的所有权,那么当前尝试获取monitor的所有权的线程会被阻塞,直
到monitor的进入数变为0,才能重新尝试获取monitor的所有权。
monitorexit(重要)
能执行monitorexit指令的线程一定是拥有当前对象的monitor的所有权的线程。
执行monitorexit时会将monitor的进入数减1。当monitor的进入数减为0时,当前线程退出
monitor,不再拥有monitor的所有权,此时其他被这个monitor阻塞的线程可以尝试去获取这个
monitor的所有权
monitorexit释放锁。
monitorexit插入在方法结束处和异常处,JVM保证每个monitorenter必须有对应的monitorexit。
tips(重要)
关于monitorenter和monitorexit描述
上面文字太多,杜绝去念!!!!!!
用图说话!!!! !!!!!!!!
类:com.syn.BTest
public static void main(String[] args) { synchronized (object) { System.out.println("Hello World -synchronized block "); } }
总结:
通过上面的流程我们发现
1、synchronized是靠Monitor关联拿到锁的
2、如果竞争的时候拿不到锁,线程就去竞争队列
3、如果拿到锁了,第二次拿,它又拿到锁,其他线程进入阻塞队列
4、如果拿到锁的线程调用了wait方法,其他线程进入等待队列
5、释放锁,需要将计数器减减操作
6、出现异常,也释放锁。
3 synchronized虚拟机源码
synchronized是Java中的关键字,无法通过JDK源码查看它的实现,它是由JVM提供支持的,所以如果想要了解具体的实现需要查看JVM源码
目标:JVM虚拟机源码下载
http://hg.openjdk.java.net/jdk8/jdk8/hotspot/ 或者 http://hg.openjdk.java.net/jdk8/jdk8/hotspot/archive/tip.zip
解压查看即可,无需环境搭建
3.1 HotSpot源码Monitor生成
目标: 通过JVM虚拟机源码分析synchronized监视器Monitor是怎么生成的
tips:
c++源码只看重点、弄懂原理
c++重要吗?不重要
但是面试时很重要,面试过去了就不重要!!!!!!!!!!!!
学别人不会的东西你才有价值!!!!你会、大家都会,没啥意思!!
在HotSpot虚拟机中,monitor监视器是由ObjectMonitor实现的。
构造器代码src/share/vm/runtime/objectMonitor.hpp
hpp可以include包含cpp的东西,两者都是c++的代码
//构造器 ObjectMonitor() { _header = NULL; _count = 0; _waiters = 0, _recursions = 0; // 递归:线程的重入次数,典型的System.out.println _object = NULL; // 对应synchronized (object)对应里面的object _owner = NULL; // 标识拥有该monitor的线程 _WaitSet = NULL; // 因为调用object.wait()方法而被阻塞的线程会被放在该队列中 _WaitSetLock = 0 ; _Responsible = NULL; _succ = NULL; _cxq = NULL; // 竞争队列,所有请求锁的线程首先会被放在这个队列中 FreeNext = NULL; _EntryList = NULL; // 阻塞;第二轮竞争锁仍然没有抢到的线程(偏向/可重入) _SpinFreq = 0; _SpinClock = 0; OwnerIsThread = 0; }
结论:正好印证了上面的流程图
3.2 HotSpot源码之Monitor竞争
目标: 通过JVM虚拟机源码分析synchronized多个线程抢夺锁,拿到锁之后要干什么?
monitorenter指令执行:
JVM源码:src/share/vm/interpreter/interpreterRuntime.cpp
JVM函数: InterpreterRuntime::monitorenter函数
//锁竞争InterpreterRuntime::monitorenter IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } Handle h_obj(thread, elem->obj()); assert(Universe::heap()->is_in_reserved_or_null(h_obj()), "must be NULL or an object"); //偏向锁(非锁:jdk14废弃) if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); } else { // 重量级锁,最终调用了objectMonitor.cpp中的ObjectMonitor::enter ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); ...略
最终调用objectMonitor.cpp文件中的 ObjectMonitor::enter
src/share/vm/runtime/objectMonitor.cpp
//重量级锁入口 void ATTR ObjectMonitor::enter(TRAPS) { Thread * const Self = THREAD ; void * cur ; // 1、通过CAS(原子操作)操作尝试把monitor的_owner字段设置为当前线程(开始竞争) cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ; if (cur == NULL) { // Either ASSERT _recursions == 0 or explicitly set _recursions = 0. assert (_recursions == 0 , "invariant") ; assert (_owner == Self, "invariant") ; // CONSIDER: set or assert OwnerIsThread == 1 return ; } // 2、拿到锁;计数+1,recursions++ if (cur == Self) { _recursions ++ ;//第一次进入(计数+1) return ; } if (Self->is_lock_owned ((address)cur)) { assert (_recursions == 0, "internal state error"); _recursions = 1 ; _owner = Self ; OwnerIsThread = 1 ; return ; } assert (Self->_Stalled == 0, "invariant") ; Self->_Stalled = intptr_t(this) ; if (Knob_SpinEarly && TrySpin (Self) > 0) { assert (_owner == Self , "invariant") ; assert (_recursions == 0 , "invariant") ; assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ; Self->_Stalled = 0 ; return ; } assert (_owner != Self , "invariant") ; assert (_succ != Self , "invariant") ; assert (Self->is_Java_thread() , "invariant") ; JavaThread * jt = (JavaThread *) Self ; assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ; assert (jt->thread_state() != _thread_blocked , "invariant") ; assert (this->object() != NULL , "invariant") ; assert (_count >= 0, "invariant") ; Atomic::inc_ptr(&_count); EventJavaMonitorEnter event; { JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this); DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt); if (JvmtiExport::should_post_monitor_contended_enter()) { JvmtiExport::post_monitor_contended_enter(jt, this); } OSThreadContendState osts(Self->osthread()); ThreadBlockInVM tbivm(jt); Self->set_current_pending_monitor(this); for (;;) { jt->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() // or java_suspend_self() // 3、获取锁失败的线程,则等待!!!!!!!!!!!!!!!!!!!!!!!! EnterI (THREAD) ; if (!ExitSuspendEquivalent(jt)) break ; _recursions = 0 ; _succ = NULL ; exit (false, Self) ; jt->java_suspend_self(); } Self->set_current_pending_monitor(NULL); }
总结
通过CAS尝试把monitor的owner字段设置为当前线程。
如果设置之前的owner指向当前线程,说明当前线程再次进入monitor,即重入锁,执行
recursions ++ ,记录重入的次数。
获取锁失败的线程,则【等待】锁的释放。
一句话总结:自旋拿锁、拿到+1 、拿不到等待(竞争队列)
3.3 HotSpot源码之Monitor等待
目标: 通过JVM虚拟机源码分析synchronized拿不到锁的线程他们都去干什么了?
还是 /objectMonitor.cpp
还是EnterI函数
路径:src/share/vm/runtime/objectMonitor.cpp的
//拿不到锁的线程他们都去干什么了?? void ATTR ObjectMonitor::EnterI (TRAPS) { Thread * Self = THREAD ; assert (Self->is_Java_thread(), "invariant") ; assert (((JavaThread *) Self)->thread_state() == _thread_blocked , "invariant") ; // 没拿到锁,还是要尝试TryLock一次 if (TryLock (Self) > 0) { //拿到锁执行,在返回 assert (_succ != Self , "invariant") ; assert (_owner == Self , "invariant") ; assert (_Responsible != Self , "invariant") ; return ;//成功获取 } DeferredInitialize () ; //没拿到锁,开始TrySpin自旋(CAS,while循环) if (TrySpin (Self) > 0) { assert (_owner == Self , "invariant") ; assert (_succ != Self , "invariant") ; assert (_Responsible != Self , "invariant") ; return ; } assert (_succ != Self , "invariant") ; assert (_owner != Self , "invariant") ; assert (_Responsible != Self , "invariant") ; // 实在拿不到锁;当前线程被封装成ObjectWaiter对象node,状态设置成ObjectWaiter::TS_CXQ //即将放入竞争队列 ObjectWaiter node(Self) ; Self->_ParkEvent->reset() ; node._prev = (ObjectWaiter *) 0xBAD ; node.TState = ObjectWaiter::TS_CXQ ; ObjectWaiter * nxt ; for (;;) { node._next = nxt = _cxq ; //使用内核函数cmpxchg_ptr 将没有拿到锁线程(node)放到竞争队列 if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ; if (TryLock (Self) > 0) { assert (_succ != Self , "invariant") ; assert (_owner == Self , "invariant") ; assert (_Responsible != Self , "invariant") ; return ; } } if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) { Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ; } TEVENT (Inflated enter - Contention) ; int nWakeups = 0 ; int RecheckInterval = 1 ; //将竞争队列线程挂起 for (;;) { // 线程在被挂起前做一下挣扎,看能不能获取到锁 if (TryLock (Self) > 0) break ; assert (_owner != Self, "invariant") ; if ((SyncFlags & 2) && _Responsible == NULL) { Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ; } // park self if (_Responsible == Self || (SyncFlags & 1)) { TEVENT (Inflated enter - park TIMED) ; Self->_ParkEvent->park ((jlong) RecheckInterval) ; // Increase the RecheckInterval, but clamp the value. RecheckInterval *= 8 ; if (RecheckInterval > 1000) RecheckInterval = 1000 ; } else { TEVENT (Inflated enter - park UNTIMED) ; // 挂起!!!!!!::通过park将当前线程挂起(不被执行了),等待被唤 醒!!!!!!!!!!! Self->_ParkEvent->park() ; } //当该线程被唤醒时,执行TryLock----->ObjectMonitor::TryLoc !!!!!!!!!!!!!!!!!!!!! if (TryLock(Self) > 0) break ;
当该线程被唤醒时,会从挂起的点继续执行,通过 ObjectMonitor::TryLock 尝试获取锁
总结
4. 竞争失败的线程被封装成ObjectWaiter对象node,状态设置成ObjectWaiter::TS_CXQ(竞争队
列)
5. 在for循环中,通过CAS把node节点push到_cxq列表中,(竞争队列)
6. node节点push到_cxq列表之后,通过自旋尝试获取锁,如果还是没有获取到锁,则通过park将当
前线程挂起,等待被唤醒。
7. 当该线程被唤醒时,会从挂起的点继续执行,通过 ObjectMonitor::TryLock 尝试获取锁。
一句话总结:没拿到,尝试拿一次、在自旋去拿、实在拿不到就去竞争队列、等待唤醒
3.4 HotSpot源码之Monitor释放
目标: 通过JVM虚拟机源码分析synchronized拿到锁的线程最后是怎么释放锁的?
执行monitorexit指令
还是 /objectMonitor.cpp
里面的exit函数
Osrc/share/vm/runtime/objectMonitor.cpp
//线程释放调用exit方法 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) { Thread * Self = THREAD ; if (THREAD != _owner) { if (THREAD->is_lock_owned((address) _owner)) { assert (_recursions == 0, "invariant") ; _owner = THREAD ; _recursions = 0 ; OwnerIsThread = 1 ; } else { TEVENT (Exit - Throw IMSX) ; assert(false, "Non-balanced monitor enter/exit!"); if (false) { THROW(vmSymbols::java_lang_IllegalMonitorStateException()); } return; } } //_recursions计数不等于0;说明还没出代码块;进入减减操作, if (_recursions != 0) { _recursions--; // this is simple recursive enter TEVENT (Inflated exit - recursive) ; return ; } if ((SyncFlags & 4) == 0) { _Responsible = NULL ; } #if INCLUDE_TRACE if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) { _previous_owner_tid = SharedRuntime::get_java_tid(Self); } #endif for (;;) { assert (THREAD == _owner, "invariant") ; if (Knob_ExitPolicy == 0) { OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock OrderAccess::storeload() ; // See if we need to wake a successor if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) { TEVENT (Inflated exit - simple egress) ; return ; } TEVENT (Inflated exit - complex egress) ; if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) { return ; } TEVENT (Exit - Reacquired) ; } else { if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) { OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock OrderAccess::storeload() ; // Ratify the previously observed values. if (_cxq == NULL || _succ != NULL) { TEVENT (Inflated exit - simple egress) ; return ; } if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) { TEVENT (Inflated exit - reacquired succeeded) ; return ; } TEVENT (Inflated exit - reacquired failed) ; } else { TEVENT (Inflated exit - complex egress) ; } } guarantee (_owner == THREAD, "invariant") ; // 计数为0;开始唤醒cq竞争队列、enteryList阻塞队列 ObjectWaiter * w = NULL ;//w就是被唤醒的线程 int QMode = Knob_QMode ; // qmode = 2:直接绕过EntryList阻塞队列,从cxq(竞争)队列中获取线程用于竞争锁 if (QMode == 2 && _cxq != NULL) { w = _cxq ; assert (w != NULL, "invariant") ; assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ; ExitEpilog (Self, w) ; return ; } // qmode =3:cxq(竞争)队列插入EntryList(阻塞)尾部; if (QMode == 3 && _cxq != NULL) { w = _cxq ; for (;;) { assert (w != NULL, "Invariant") ; ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ; if (u == w) break ; w = u ; } assert (w != NULL , "invariant") ; ObjectWaiter * q = NULL ; ObjectWaiter * p ; for (p = w ; p != NULL ; p = p->_next) { guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ; p->TState = ObjectWaiter::TS_ENTER ; p->_prev = q ; q = p ; } // Append the RATs to the EntryList // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time. ObjectWaiter * Tail ; for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ; if (Tail == NULL) { _EntryList = w ; } else { Tail->_next = w ; w->_prev = Tail ; } } // qmode =4:cxq队列插入到_EntryList头部 if (QMode == 4 && _cxq != NULL) { // Aggressively drain cxq into EntryList at the first opportunity. // This policy ensure that recently-run threads live at the head of EntryList. // Drain _cxq into EntryList - bulk transfer. // First, detach _cxq. // The following loop is tantamount to: w = swap (&cxq, NULL) w = _cxq ; for (;;) { assert (w != NULL, "Invariant") ; ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ; if (u == w) break ; w = u ; } assert (w != NULL , "invariant") ; ObjectWaiter * q = NULL ; ObjectWaiter * p ; for (p = w ; p != NULL ; p = p->_next) { guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ; p->TState = ObjectWaiter::TS_ENTER ; p->_prev = q ; q = p ; } // Prepend the RATs to the EntryList if (_EntryList != NULL) { q->_next = _EntryList ; _EntryList->_prev = q ; } _EntryList = w ; // Fall thru into code that tries to wake a successor from EntryList } w = _EntryList ; if (w != NULL) { assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ; ExitEpilog (Self, w) ;//唤醒w!!!!!!!!!!!!!!!!!!!!!! ------->当前 类的ExitEpilog return ; }
实现如下
void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) { assert (_owner == Self, "invariant") ; _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ; ParkEvent * Trigger = Wakee->_event ; Wakee = NULL ; // Drop the lock OrderAccess::release_store_ptr (&_owner, NULL) ; OrderAccess::fence() ; // ST _owner vs LD in unpark() if (SafepointSynchronize::do_call_back()) { TEVENT (unpark before SAFEPOINT) ; } DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self); // 唤醒之前被park()挂起的线程. Trigger->unpark() ;// invoke ObjectMonitor::EnterI 方法,继续竞争 if (ObjectMonitor::_sync_Parks != NULL) { ObjectMonitor::_sync_Parks->inc() ; } }
被唤醒的线程,回到 ObjectMonitor::EnterI (TRAPS) 的第600行,继续执行monitor 的竞争。
// park self if (_Responsible == Self || (SyncFlags & 1)) { TEVENT (Inflated enter - park TIMED) ; Self->_ParkEvent->park ((jlong) RecheckInterval) ; // Increase the RecheckInterval, but clamp the value. RecheckInterval *= 8 ; if (RecheckInterval > 1000) RecheckInterval = 1000 ; } else { TEVENT (Inflated enter - park UNTIMED) ; Self->_ParkEvent->park() ; } //唤醒之后就开始抢夺锁 if (TryLock(Self) > 0) break ;
TryLock方 法实现如下:
//线程尝试获取锁(or 线程被唤醒后获取) int ObjectMonitor::TryLock (Thread * Self) { for (;;) { void * own = _owner ; if (own != NULL) return 0 ; //获取 if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) { // Either guarantee _recursions == 0 or set _recursions = 0. assert (_recursions == 0, "invariant") ; assert (_owner == Self, "invariant") ; // 尝试拿到锁返回1 return 1 ; } //拿不到锁返回-1 if (true) return -1 ; } }
1、先进入减减操作,直到为0
2、为0后,唤醒竞争队列的线程
3、唤醒线程后,继续争夺锁,循环前面的步骤(锁竞争-----等待----释放)
一句话总结:释放后,进入减减操作、直到为0然后唤醒队列,让他们去争夺锁,循环前面步骤