version
The versions required for Spark and Java are as follow:
Spark Version | Scala Version | Java Version | TsFile |
2.4.3 |
2.11 |
1.8 |
0.10.0 |
install
mvn clean scala:compile compile install.
1. maven dependency
<dependency>
<groupId>org.apache.iotdb</groupId>
<artifactId>spark-iotdb-connector</artifactId>
<version>0.10.0</version>
</dependency>
2. spark-shell user guide
spark-shell --jars spark-iotdb-connector-0.10.0.jar,iotdb-jdbc-0.10.0-jar-with-dependencies.jar
import org.apache.iotdb.spark.db._
val df = spark.read.format("org.apache.iotdb.spark.db").option("url","jdbc:iotdb://127.0.0.1:6667/").option("sql","select * from root").load
df.printSchema()
df.show()
如果要对RDD进行分区,可以执行以下操作
spark-shell --jars spark-iotdb-connector-0.10.0.jar,iotdb-jdbc-0.10.0-jar-with-dependencies.jar
import org.apache.iotdb.spark.db._
val df = spark.read.format("org.apache.iotdb.spark.db").option("url","jdbc:iotdb://127.0.0.1:6667/").option("sql","select * from root").
option("lowerBound", [lower bound of time that you want query(include)]).option("upperBound", [upper bound of time that you want query(include)]).
option("numPartition", [the partition number you want]).load
df.printSchema()
df.show()
3. 模式推理
以下 TsFile 结构为例: TsFile 架构中有三个度量:状态、温度和硬件。这三项测量的基本信息如下:
Name | Type | Encode | |||
status | Boolean | PLAIN | |||
temperature | Float | RLE | |||
hardware | Text | PLAIN |
The existing data in the TsFile is as follows:
device:root.ln.wf01.wt01 | device:root.ln.wf02.wt02 | ||||||
status | temperature | hardware | status | ||||
time | value | time | value | time | value | time | value |
1 | True | 1 | 2.2 | 2 | “aaa” | 1 | True |
3 | True | 2 | 2.2 | 4 | “bbb” | 2 | False |
5 | False | 3 | 2.1 | 6 | “ccc” | 4 | True |
The wide(default) table form is as follows:
time | root.ln.wf02.wt02.temperature | root.ln.wf02.wt02.status | root.ln.wf02.wt02.hardware | root.ln.wf01.wt01.temperature | root.ln.wf01.wt01.status | root.ln.wf01.wt01.hardware |
1 | null | true | null | 2.2 | true | null |
2 | null | false | aaa | 2.2 | null | null |
3 | null | null | null | 2.1 | true | null |
4 | null | true | bbb | null | null | null |
5 | null | null | null | null | false | null |
6 | null | null | ccc | null | null | null |
You can also use narrow table form which as follows: (You can see part 4 about how to use narrow form)
time | device_name | status | hardware | temperature |
1 | root.ln.wf02.wt01 | true | null | 2.2 |
1 | root.ln.wf02.wt02 | true | null | null |
2 | root.ln.wf02.wt01 | null | null | 2.2 |
2 | root.ln.wf02.wt02 | false | aaa | null |
3 | root.ln.wf02.wt01 | true | null | 2.1 |
4 | root.ln.wf02.wt02 | true | bbb | null |
5 | root.ln.wf02.wt01 | false | null | null |
6 | root.ln.wf02.wt02 | null | ccc | null |
4. 宽表和窄表之间的转换
从宽到窄
import org.apache.iotdb.spark.db._
val wide_df = spark.read.format("org.apache.iotdb.spark.db").option("url", "jdbc:iotdb://127.0.0.1:6667/").option("sql", "select * from root where time < 1100 and time > 1000").load
val narrow_df = Transformer.toNarrowForm(spark, wide_df)
从窄到宽
import org.apache.iotdb.spark.db._
val wide_df = Transformer.toWideForm(spark, narrow_df)
5. Java 用户指南
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.iotdb.spark.db.*
public class Example {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("Build a DataFrame from Scratch")
.master("local[*]")
.getOrCreate();
Dataset<Row> df = spark.read().format("org.apache.iotdb.spark.db")
.option("url","jdbc:iotdb://127.0.0.1:6667/")
.option("sql","select * from root").load();
df.printSchema();
df.show();
Dataset<Row> narrowTable = Transformer.toNarrowForm(spark, df)
narrowTable.show()
}
}