基于CNN卷积神经网络的调制信号识别算法matlab仿真

简介: 基于CNN卷积神经网络的调制信号识别算法matlab仿真

1.算法运行效果图预览

1.png
2.png
3.jpeg
4.jpeg

2.算法运行软件版本
MATLAB2022A

3.算法理论概述
在无线通信系统中,调制信号的识别是一项重要的任务。通过识别接收到的信号的调制方式,可以对信号进行解调和解码,从而实现正确的数据传输和通信。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,在图像和信号处理领域取得了显著的成功。

  1. 卷积神经网络(CNN)

    CNN是一种深度学习模型,主要用于图像处理和模式识别任务。其核心原理是使用卷积层、池化层和全连接层来提取特征和进行分类。以下是CNN中常用的数学原理:
    
    卷积层: 卷积层通过滤波器(也称为卷积核)来提取图像或信号的特征。卷积操作通过将滤波器与输入图像或信号的局部区域进行元素相乘,并求和得到输出特征图。
    
    池化层: 池化层用于减小特征图的尺寸,并降低计算复杂度。常见的池化操作有最大池化和平均池化。 
    
    全连接层: 全连接层将池化层输出的特征图映射到具体的分类结果,常用于分类任务。
    
  2. 调制信号识别

     调制信号识别任务是将接收到的信号进行分类,确定其调制方式。通常,调制信号可以表示为复数形式:
    

af0d7d7b8553aee37afcab2b0a177737_82780907_202309182357100488790296_Expires=1695053230&Signature=U430C%2BAqlYyLj7q8wCQtw%2BuDJOY%3D&domain=8.png

其中,$A$为信号的幅度,$f_c$为信号的载频频率,$\phi(t)$为信号的相位。

3.实现过程

  1. 数据预处理

     首先,需要准备用于训练和测试的调制信号数据集。数据预处理包括信号采样、归一化、分割成时域序列,并将其转换为CNN网络的输入格式。
    
  2. 搭建CNN网络

     构建卷积神经网络模型,可以根据任务的复杂性和需求选择合适的网络结构。一般来说,包含若干卷积层、池化层、全连接层和输出层。
    
  3. 训练CNN模型

    使用准备好的调制信号数据集,对CNN模型进行训练。训练过程中需要定义损失函数(通常使用交叉熵损失函数)和优化算法(如随机梯度下降),通过反向传播算法不断更新模型的参数,使其逐渐收敛到最优状态。
    
  4. 测试和验证

    训练完成后,使用测试集对模型进行验证和评估。计算准确率、精确度、召回率等指标来评估模型的性能。
    
  5. 调制信号识别

     最终,将训练好的CNN模型用于调制信号的识别。通过将接收到的信号输入CNN模型,得到分类结果,确定信号的调制方式。
    

4.部分核心程序

```% 构建调制类型分类的卷积神经网络模型modClassNet
modClassNet = [
imageInputLayer([1 spf 2], 'Normalization', 'none', 'Name', 'Input Layer')

convolution2dLayer(filterSize, 16*netWidth, 'Padding', 'same', 'Name', 'CNN1')
batchNormalizationLayer('Name', 'BN1')
reluLayer('Name', 'ReLU1')
maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool1')

convolution2dLayer(filterSize, 24*netWidth, 'Padding', 'same', 'Name', 'CNN2')
batchNormalizationLayer('Name', 'BN2')
reluLayer('Name', 'ReLU2')
maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool2')

convolution2dLayer(filterSize, 32*netWidth, 'Padding', 'same', 'Name', 'CNN3')
batchNormalizationLayer('Name', 'BN3')
reluLayer('Name', 'ReLU3')
maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool3')

convolution2dLayer(filterSize, 48*netWidth, 'Padding', 'same', 'Name', 'CNN4')
batchNormalizationLayer('Name', 'BN4')
reluLayer('Name', 'ReLU4')
maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool4')

convolution2dLayer(filterSize, 64*netWidth, 'Padding', 'same', 'Name', 'CNN5')
batchNormalizationLayer('Name', 'BN5')
reluLayer('Name', 'ReLU5')
maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool5')

convolution2dLayer(filterSize, 96*netWidth, 'Padding', 'same', 'Name', 'CNN6')
batchNormalizationLayer('Name', 'BN6')
reluLayer('Name', 'ReLU6')

convolution2dLayer(filterSize, 128*netWidth, 'Padding', 'same', 'Name', 'CNN7')
batchNormalizationLayer('Name', 'BN7')
reluLayer('Name', 'ReLU7')

averagePooling2dLayer([1 ceil(spf/32)], 'Name', 'AP1')

fullyConnectedLayer(numModTypes, 'Name', 'FC1')
softmaxLayer('Name', 'SoftMax')

classificationLayer('Name', 'Output') ]
% 分析网络结构并展示网络的层次结构
analyzeNetwork(modClassNet)

% 最大训练轮数,网络将在此轮数结束后停止训练
maxEpochs = 15;
% 每次迭代的小批量样本数量
miniBatchSize = 256;
% 每隔多少次迭代进行一次验证,用于观察验证集上的性能
validationFrequency = 20;
% 设置训练选项,包括优化算法(adam)、学习率、训练轮数、小批量样本数量、是否每轮迭代都重新打乱数据、是否绘制训练进度图、是否显示训练过程信息、验证数据和验证频率、学习率衰减策略等

options = trainingOptions('adam', ...
'InitialLearnRate',1e-2, ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{rxValidation,rxValidationLabel}, ...
'ValidationFrequency',validationFrequency, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropPeriod', 9, ...
'LearnRateDropFactor', 0.1, ...
'ExecutionEnvironment', 'multi-gpu');

% 使用训练数据集rxTraining和标签rxTrainingLabel,利用设置的模型modClassNet和训练选项options训练得到调制类型分类的神经网络模型trainedNet0SNR_v7

trainedNet0SNR_v7 = trainNetwork(rxTraining,rxTrainingLabel,modClassNet,options);

```

相关文章
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
10天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
22天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
387 7
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
3天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。

热门文章

最新文章