基于 ACK Fluid 的混合云优化数据访问(五):自动化跨区域中心数据分发

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 基于 ACK Fluid 的混合云优化数据访问(五):自动化跨区域中心数据分发

作者:车漾

前文回顾:

本系列将介绍如何基于 ACK Fluid 支持和优化混合云的数据访问场景,相关文章请参考:

-基于 ACK Fluid 的混合云优化数据访问(一):场景与架构

-基于 ACK Fluid 的混合云优化数据访问(二):搭建弹性计算实例与第三方存储的桥梁

-基于 ACK Fluid 的混合云优化数据访问(三):加速第三方存储的读访问,降本增效并行

-基于 ACK Fluid 的混合云优化数据访问(四):将第三方存储目录挂载到 Kubernetes,提升效率和标准化


在之前的文章中,我们讨论了混合云场景下 Kubernetes 与数据相结合的 Day 1:解决数据接入的问题,实现云上计算和线下存储的连接。在此基础上,ACK Fluid 进一步解决了数据访问的成本和性能问题。而进入 Day 2,当用户真的在生产环境使用该方案时,最主要的挑战就是运维側如何处理多区域集群的数据同步。



概述


许多企业出于性能、安全、稳定性和资源隔离的目的,会在不同区域建立多个计算集群。而这些计算集群需要远程访问唯一中心化的数据存储。比如随着大语言模型的逐渐成熟,基于其的多区域推理服务也逐渐成为各个企业需要支持的能力,就是这个场景的具体实例,它有不小的挑战:


  • 多计算集群跨数据中心手动操作数据同步,非常耗时
  • 以大语言模型为例,参数多文件大,数量多,管理复杂:不同业务选择不同的基础模型和业务数据,因此最终模型存在差异。
  • 模型数据会根据业务输入不断做更新迭代,模型数据更新频繁
  • 模型推理服务启动慢,拉取文件时间长:大型语言模型的参数规模相当巨大,体积通常很大甚至达到几百 GB,导致拉取到 GPU 显存的耗时巨大,启动时间非常慢。
  • 模型更新需要所有区域同步更新,而在过载的存储集群上进行复制作业严重影响现有负载的性能。


ACK Fluid 除了提供通用存储客户端的加速能力,还提供了定时和触发式数据迁移和预热能力,简化数据分发的复杂度。


  • 节省网络和计算成本:跨区流量成本大幅降低,计算时间明显缩短,少量增加计算集群成本;并且可以通过弹性进一步优化。
  • 应用数据更新大幅加速:由于计算的数据访问在同一个数据中心或者可用区内完成通信,延时降低,且缓存吞吐并发能力可线性扩展。
  • 减少复杂的数据同步操作:通过自定义策略控制数据同步操作,降低数据访问争抢,同时通过自动化的方式降低运维复杂度。


演示


本演示介绍如何通过 ACK Fluid 的定时预热机制更新用户不同区域的计算集群可以访问的数据。


前提条件

  • 已创建 ACK Pro 版集群,且集群版本为 1.18 及以上。具体操作,请参见创建 ACK Pro 版集群[1]
  • 已安装云原生 AI 套件并部署 ack-fluid 组件。重要若您已安装开源 Fluid,请卸载后再部署 ack-fluid 组件。
  • 未安装云原生 AI 套件:安装时开启 Fluid 数据加速。具体操作,请参见安装云原生 AI 套件[2]
  • 已安装云原生 AI 套件:在容器服务管理控制台[3]云原生 AI 套件页面部署 ack-fluid
  • 已通过 kubectl 连接 Kubernetes 集群。具体操作,请参见通过 kubectl 工具连接集群[4]


背景信息

准备好 K8s 和 OSS 环境的条件,您只需要耗费 10 分钟左右即可完成 JindoRuntime 环境的部署。


步骤一:准备 OSS Bucket 的数据

1. 执行以下命令,下载一份测试数据。


$ wget https://archive.apache.org/dist/hbase/2.5.2/RELEASENOTES.md


2. 将下载的测试数据上传到阿里云 OSS 对应的 Bucket 上,上传方法可以借助 OSS 提供的客户端工具 ossutil。具体操作,请参见安装 ossutil[5]


$ ossutil cp RELEASENOTES.md oss://<bucket>/<path>/RELEASENOTES.md


步骤二:创建Dataset和JindoRuntime

1. 在创建 Dataset 之前,您可以创建一个 mySecret.yaml 文件来保存 OSS 的 accessKeyId 和 accessKeySecret。


创建 mySecret.yaml 文件的 YAML 样例如下:


apiVersion: v1
kind: Secret
metadata:
  name: mysecret
stringData:
  fs.oss.accessKeyId: xxx
  fs.oss.accessKeySecret: xxx


2. 执行以下命令,生成 Secret。


$ kubectl create -f mySecret.yaml


3. 使用以下 YAML 文件样例创建一个名为 dataset.yaml 的文件,且里面包含两部分:


  • 创建一个 Dataset,描述远端存储数据集和 UFS 的信息。
  • 创建一个 JindoRuntime,启动一个 JindoFS 的集群来提供缓存服务。


apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
  name: demo
spec:
  mounts:
    - mountPoint: oss://<bucket-name>/<path>
      options:
        fs.oss.endpoint: <oss-endpoint>
      name: hbase
      path: "/"
      encryptOptions:
        - name: fs.oss.accessKeyId
          valueFrom:
            secretKeyRef:
              name: mysecret
              key: fs.oss.accessKeyId
        - name: fs.oss.accessKeySecret
          valueFrom:
            secretKeyRef:
              name: mysecret
              key: fs.oss.accessKeySecret
  accessModes:
    - ReadOnlyMany
---
apiVersion: data.fluid.io/v1alpha1
kind: JindoRuntime
metadata:
  name: demo
spec:
  replicas: 1
  tieredstore:
    levels:
      - mediumtype: MEM
        path: /dev/shm
        quota: 2Gi
        high: "0.99"
        low: "0.8"
  fuse:
   args:
    - -okernel_cache
    - -oro
    - -oattr_timeout=60
    - -oentry_timeout=60
    - -onegative_timeout=60


相关参数解释如下表所示:


参数 说明
mountPoint oss://<oss_bucket>/<path>表示挂载UFS的路径,路径中不需要包含endpoint信息。
fs.oss.endpoint OSS Bucket的endpoint信息,公网或私网地址皆可。
accessModes 表示Dataset的访问模式。
replicas 表示创建JindoFS集群的Worker数量。
mediumtype 表示缓存类型。定义创建JindoRuntime模板样例时,JindoFS暂时支持HDD/SSD/MEM中的其中一种缓存类型。
path 表示存储路径,暂时只支持单个路径。当选择MEM做缓存时,需指定一个本地路径来存储Log等文件。
quota 表示缓存最大容量,单位GB。缓存容量可以根据UFS数据大小自行配置。
high 表示存储容量上限大小。
low 表示存储容量下限大小。
fuse.args 表示可选的fuse客户端挂载参数。通常与Dataset的访问模式搭配使用。当Dataset访问模式为ReadOnlyMany时,我们开启kernel_cache以利用内核缓存优化读性能。此时我们可以设置attr_timeout(文件属性缓存保留时间)、entry_timeout(文件名读取缓存保留时间)超时时间、negative_timeout(文件名读取失败缓存保留时间),默认均为7200s。当Dataset访问模式为ReadWriteMany时,我们建议使用默认配置。此时参数如下:- -oauto_cache- -oattr_timeout=0- -oentry_timeout=0- -onegative_timeout=0使用auto_cache以确保如果文件大小或修改时间发生变化,缓存就会失效。同时将超时时间都设置为0。


4. 执行以下命令,创建 JindoRuntime 和 Dataset。


$ kubectl create -f dataset.yaml


5. 执行以下命令,查看 Dataset 的部署情况。


$ kubectl get dataset


预期输出:


NAME    UFS TOTAL SIZE   CACHED      CACHE CAPACITY   CACHED PERCENTAGE   PHASE   AGE
demo    588.90KiB        0.00B       10.00GiB         0.0%                Bound   2m7s


步骤三:创建支持定时运行的 Dataload

1. 使用以下 YAML 文件样例创建一个名为 dataload.yaml 的文件。


apiVersion: data.fluid.io/v1alpha1
kind: DataLoad
metadata:
  name: cron-dataload
spec:
  dataset:
    name: demo
    namespace: default
  policy: Cron
  schedule: "*/2 * * * *" # Run every 2 min


相关参数解释如下表所示:


参数 说明
dataset 表示执行dataload的数据集name和namespace。
policy 表示执行策略,目前支持Once和Cron。这里创建定时dataload任务。
shcedule 表示触发dataload的策略。


scheule 使用以下 cron 格式:


# ┌───────────── 分钟 (0 - 59)
# │ ┌───────────── 小时 (0 - 23)
# │ │ ┌───────────── 月的某天 (1 - 31)
# │ │ │ ┌───────────── 月份 (1 - 12)
# │ │ │ │ ┌───────────── 周的某天 (0 - 6)(周日到周一;在某些系统上,7 也是星期日)
# │ │ │ │ │                          或者是 sun,mon,tue,web,thu,fri,sat
# │ │ │ │ │
# │ │ │ │ │
# * * * * *


同时,cron 支持下列运算符:


  • 逗号(,)表示列举,例如:1,3,4,7 * * * * 表示在每小时的 1、3、4、7 分时执行Dataload。
  • 连词符(-)表示范围,例如:1-6 * * * * 表示每小时的 1 到 6 分钟内,每分钟都执行一次。
  • 星号(*)代表任何可能的值。例如:在“小时域”里的星号等于是“每一个小时”。
  • 百分号(%) 表示“每"。例如:*%10 * * * * 表示每 10 分钟执行一次。
  • 斜杠 (/) 用于描述范围的增量。例如:*/2 * * * *表示每 2 分钟执行一次。


您也可以在这里查看更多信息。


Dataload 相关高级配置请参考如下配置文件:


apiVersion: data.fluid.io/v1alpha1
kind: DataLoad
metadata:
  name: cron-dataload
spec:
  dataset:
    name: demo
    namespace: default
  policy: Cron # including Once, Cron
  schedule: * * * * * # only set when policy is cron
  loadMetadata: true
  target:
    - path: <path1>
      replicas: 1
    - path: <path2>
      replicas: 2


相关参数解释如下表所示:


参数 说明
policy 表示dataload执行策略,包括[Once, Cron]。
schedule 表示cron使用的计划,只有policy为Cron时有效。
loadMetadata 表示在dataload前是否同步元数据。
target 表示dataload的目标,支持指定多个目标。
path 表示执行dataload的路径。
replicas 表示缓存的副本数。


6. 执行以下命令创建 Dataload。


$ kubectl apply -f dataload.yaml


7. 执行以下命令查看 Dataload 状态。


$ kubectl get dataload


预期输出:


NAME             DATASET   PHASE      AGE     DURATION
cron-dataload    demo      Complete   3m51s   2m12s


8. 等待 Dataload 状态为 Complete 后,执行以下命令查看当前 dataset 状态。


$ kubectl get dataset


预期输出:


NAME    UFS TOTAL SIZE   CACHED      CACHE CAPACITY   CACHED PERCENTAGE   PHASE   AGE
demo    588.90KiB        588.90KiB   10.00GiB         100.0%              Bound   5m50s


可以看出 oss 中文件已经全部加载到缓存。


步骤四:创建应用容器访问 OSS 中的数据

本文以创建一个应用容器访问上述文件以查看定时 Dataload 效果。


1. 使用以下 YAML 文件样例,创建名为 app.yaml 的文件。


apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
    - name: nginx
      image: nginx
      volumeMounts:
        - mountPath: /data
          name: demo-vol
  volumes:
    - name: demo-vol
      persistentVolumeClaim:
        claimName: demo


2. 执行以下命令创建应用容器。


$ kubectl create -f app.yaml


3. 等待应用容器就绪,执行以下命令查看 OSS 中的数据:


$ kubectl exec -it nginx -- ls -lh /data


预期输出:


total 589K
-rwxrwxr-x 1 root root 589K Jul 31 04:20 RELEASENOTES.md


4. 为了验证 dataload 定时更新底层文件效果,我们在定时 dataload 触发前修改 RELEASENOTES.md 内容并重新上传。


$ echo "hello, crondataload." >> RELEASENOTES.md


重新上传该文件到 oss。


$ ossutil cp RELEASENOTES.md oss://<bucket-name>/<path>/RELEASENOTES.md


5. 等待 dataload 任务触发。Dataload 任务完成时,执行以下命令查看 Dataload 作业运行情况:


$ kubectl describe dataload cron-dataload


预期输出:


...
Status:
  Conditions:
    Last Probe Time:       2023-07-31T04:30:07Z
    Last Transition Time:  2023-07-31T04:30:07Z
    Status:                True
    Type:                  Complete
  Duration:                5m54s
  Last Schedule Time:      2023-07-31T04:30:00Z
  Last Successful Time:    2023-07-31T04:30:07Z
  Phase:                   Complete
...


其中,Status 中 Last Schedule Time 为上一次 dataload 作业的调度时间,Last Successful Time 为上一次 dataload 作业的完成时间。


此时,可以执行以下命令查看当前 Dataset 状态:


$ kubectl get dataset


预期输出:


NAME    UFS TOTAL SIZE   CACHED      CACHE CAPACITY   CACHED PERCENTAGE   PHASE   AGE
demo    588.90KiB        1.15MiB     10.00GiB         100.0%              Bound   10m


可以看出更新后的文件也已经加载到了缓存。


6. 执行以下命令在应用容器中查看更新后的文件:


$ kubectl exec -it nginx -- tail /data/RELEASENOTES.md


预期输出:


  \<name\>hbase.config.read.zookeeper.config\</name\>
  \<value\>true\</value\>
  \<description\>
        Set to true to allow HBaseConfiguration to read the
        zoo.cfg file for ZooKeeper properties. Switching this to true
        is not recommended, since the functionality of reading ZK
        properties from a zoo.cfg file has been deprecated.
  \</description\>
\</property\>
hello, crondataload.


从最后一行可以看出,应用容器已经可以访问更新后的文件。


环境清理

当您不再使用该数据加速功能时,需要清理环境。

执行以下命令,删除 JindoRuntime 和应用容器。


$ kubectl delete -f app.yaml
$ kubectl delete -f dataset.yaml


总结


关于基于 ACK Fluid 的混合云优化数据访问的讨论先到这里告一段落,阿里云容器服务团队会和用户在这个场景下持续的迭代和优化,随着实践不断深入,这个系列也会持续更新。


相关链接:

[1] 创建 ACK Pro 版集群

https://help.aliyun.com/document_detail/176833.html#task-skz-qwk-qfb

[2] 安装云原生 AI 套件

https://help.aliyun.com/zh/ack/cloud-native-ai-suite/user-guide/deploy-the-cloud-native-ai-suite#task-2038811

[3] 容器服务管理控制台

https://account.aliyun.com/login/login.htm?oauth_callback=https%3A%2F%2Fcs.console.aliyun.com%2F

[4] 通过 kubectl 工具连接集群

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/obtain-the-kubeconfig-file-of-a-cluster-and-use-kubectl-to-connect-to-the-cluster#task-ubf-lhg-vdb

[5] 安装 ossutil

https://help.aliyun.com/zh/oss/developer-reference/install-ossutil#concept-303829

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
6天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
20天前
|
人工智能 前端开发 测试技术
探索软件测试中的自动化框架选择与优化策略####
本文深入剖析了当前主流的自动化测试框架,通过对比分析各自的优势、局限性及适用场景,为读者提供了一套系统性的选择与优化指南。文章首先概述了自动化测试的重要性及其在软件开发生命周期中的位置,接着逐一探讨了Selenium、Appium、Cypress等热门框架的特点,并通过实际案例展示了如何根据项目需求灵活选用与配置框架,以提升测试效率和质量。最后,文章还分享了若干最佳实践和未来趋势预测,旨在帮助测试工程师更好地应对复杂多变的测试环境。 ####
42 4
|
26天前
|
机器学习/深度学习 前端开发 测试技术
探索软件测试中的自动化测试框架选择与优化策略####
本文深入探讨了在当前软件开发生命周期中,自动化测试框架的选择对于提升测试效率、保障产品质量的重要性。通过分析市场上主流的自动化测试工具,如Selenium、Appium、Jest等,结合具体项目需求,提出了一套系统化的选型与优化策略。文章首先概述了自动化测试的基本原理及其在现代软件开发中的角色变迁,随后详细对比了各主流框架的功能特点、适用场景及优缺点,最后基于实际案例,阐述了如何根据项目特性量身定制自动化测试解决方案,并给出了持续集成/持续部署(CI/CD)环境下的最佳实践建议。 --- ####
|
2月前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
110 4
|
1月前
|
运维 监控 Linux
自动化运维:如何利用Python脚本优化日常任务##
【10月更文挑战第29天】在现代IT运维中,自动化已成为提升效率、减少人为错误的关键技术。本文将介绍如何通过Python脚本来简化和自动化日常的运维任务,从而让运维人员能够专注于更高层次的工作。从备份管理到系统监控,再到日志分析,我们将一步步展示如何编写实用的Python脚本来处理这些任务。 ##
|
2月前
|
Kubernetes 安全 Cloud Native
云上攻防-云原生篇&K8s安全-Kubelet未授权访问、API Server未授权访问
本文介绍了云原生环境下Kubernetes集群的安全问题及攻击方法。首先概述了云环境下的新型攻击路径,如通过虚拟机攻击云管理平台、容器逃逸控制宿主机等。接着详细解释了Kubernetes集群架构,并列举了常见组件的默认端口及其安全隐患。文章通过具体案例演示了API Server 8080和6443端口未授权访问的攻击过程,以及Kubelet 10250端口未授权访问的利用方法,展示了如何通过这些漏洞实现权限提升和横向渗透。
191 0
云上攻防-云原生篇&K8s安全-Kubelet未授权访问、API Server未授权访问
|
2月前
|
存储 运维 监控
高效运维管理:从基础架构优化到自动化实践
在当今数字化时代,高效运维管理已成为企业IT部门的重要任务。本文将探讨如何通过基础架构优化和自动化实践来提升运维效率,确保系统的稳定性和可靠性。我们将从服务器选型、存储优化、网络配置等方面入手,逐步引导读者了解运维管理的核心内容。同时,我们还将介绍自动化工具的使用,帮助运维人员提高工作效率,降低人为错误的发生。通过本文的学习,您将掌握高效运维管理的关键技巧,为企业的发展提供有力支持。
|
2月前
|
存储 Kubernetes 负载均衡
基于Ubuntu-22.04安装K8s-v1.28.2实验(四)使用域名访问网站应用
基于Ubuntu-22.04安装K8s-v1.28.2实验(四)使用域名访问网站应用
32 1
|
2月前
|
负载均衡 应用服务中间件 nginx
基于Ubuntu-22.04安装K8s-v1.28.2实验(二)使用kube-vip实现集群VIP访问
基于Ubuntu-22.04安装K8s-v1.28.2实验(二)使用kube-vip实现集群VIP访问
66 1
|
3月前
|
机器学习/深度学习 存储 算法
Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著
Optuna,广受欢迎的超参数优化框架,近日发布了其第四个主要版本。自2018年问世以来,Optuna迅速成为机器学习领域的关键工具,目前拥有10,000+ GitHub星标、每月300万+下载量、16,000+代码库使用、5,000+论文引用及18,000+ Kaggle使用。Optuna 4.0引入了OptunaHub平台,支持功能共享;正式推出Artifact Store管理生成文件;稳定支持NFS的JournalStorage实现分布式优化;显著加速多目标TPESampler,并引入新Terminator算法。
150 9
Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多