Filebeat日志采集器实例 2

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Filebeat日志采集器实例

3.4.2 配置Logstash连接ElasticSearch

上面的数据,其实还是我们的原始数据,并没有经过处理,所以我们这个时候就需要使用到Logstash的其它功能了。我们继续修改配置文件

# 打开配置文件
vim  mogu-dashboard.conf

然后修改一下的值

input {
        beats {
                port => "5044"
        }
}
filter {
        mutate {
                split => {"message"=>"|"}
        }
        mutate {
                add_field => {
                "userId" => "%{[message][1]}"
                "visit" => "%{[message][2]}"
                "date" => "%{[message][3]}"
                }
        }
        mutate {
                convert => {
                "userId" => "integer"
                "visit" => "string"
                "date" => "string"
                }
        }
        mutate {
           remove_field => [ "host" ]
        }
}
#output {
# stdout { codec => rubydebug }
#}
output {
  elasticsearch {
    hosts => [ "127.0.0.1:9200"]
  }
}

然后再次启动

./bin/logstash -f mogu-dashboard.conf

其实能够看到,我们原来的数据,就经过了处理了,产生了新的字段

同时我们还可以对我们的数据,进行类型转换,为了方便我们的下游进行处理

  mutate {
    convert => {
    "userId" => "integer"
    "visit" => "string"
    "date" => "string"
    }
  }

4 Kibana分析业务

4.1 启动Kibana

我们最后就需要通过Kibana来展示我们的图形化数据

#启动
./bin/kibana
#通过浏览器进行访问
http://192.168.40.133:5601/app/kibana

4.1.1 添加到索引库

添加Logstash索引到Kibana中:

http://192.168.40.133:5601/app/kibana/indexPatterns/create

输入我们的匹配规则,然后匹配到logstash,然后选择时间字段后创建

4.1.2 创建柱形图

我们点击右侧Visualizations,然后开始创建图标

然后选择柱形图

在选择我们的索引

最后我们定义我们的X轴,选择按照时间进行添加

最后更新我们的页面,然后在选择最近的30分钟

就能够看到我们的日志在源源不断的生成了,同时我们可以对我们的这个图表进行保存

说明:x轴是时间,以天为单位,y轴是count数

保存:(my-dashboard-时间间隔的柱形图)

4.1.3 创建饼图

统计各个操作的数量,形成饼图。

保存:(my-dashboard-各个操作的饼图)

4.1.4 数据表格

在图标中,选择我们需要显示的字段即可

在数据探索中进行保存,并且保存,将各个操作的数据以表格的形式展现出来。

保存:(my-dashboard-表格)

4.2 制作Dashboard

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
3月前
|
数据采集 存储 大数据
大数据之路:阿里巴巴大数据实践——日志采集与数据同步
本资料全面介绍大数据处理技术架构,涵盖数据采集、同步、计算与服务全流程。内容包括Web/App端日志采集方案、数据同步工具DataX与TimeTunnel、离线与实时数仓架构、OneData方法论及元数据管理等核心内容,适用于构建企业级数据平台体系。
|
10天前
|
存储 Kubernetes 监控
Kubernetes日志管理:使用Loki进行日志采集
通过以上步骤,在Kubernetes环境下利用LoKi进行有效率且易于管理地logs采集变成可能。此外,在实施过程中需要注意版本兼容性问题,并跟进社区最新动态以获取功能更新或安全补丁信息。
67 23
|
2月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
A+流量分析平台是阿里集团统一的全域流量数据分析平台,致力于通过埋点、采集、计算构建流量数据闭环,助力业务提升流量转化。面对万亿级日志数据带来的写入与查询挑战,平台采用Flink+Paimon+StarRocks技术方案,实现高吞吐写入与秒级查询,优化存储成本与扩展性,提升日志分析效率。
274 1
|
3月前
|
JSON 安全 网络安全
LoongCollector 安全日志接入实践:企业级防火墙场景的日志标准化采集
LoonCollector 是一款轻量级日志采集工具,支持多源安全日志的标准化接入,兼容 Syslog、JSON、CSV 等格式,适用于长亭 WAF、FortiGate、Palo Alto 等主流安全设备。通过灵活配置解析规则,LoonCollector 可将原始日志转换为结构化数据,写入阿里云 SLS 日志库,便于后续查询分析、威胁检测与合规审计,有效降低数据孤岛问题,提升企业安全运营效率。
|
3月前
|
存储
WGLOG日志管理系统可以采集网络设备的日志吗
WGLOG日志审计系统提供开放接口,支持外部获取日志内容后发送至该接口,实现日志的存储与分析。详情请访问:https://www.wgstart.com/wglog/docs9.html
|
5月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
629 54
|
11月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
2990 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
10月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
263 9
|
8月前
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
642 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log

热门文章

最新文章