Filebeat日志采集器实例 2

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Filebeat日志采集器实例

3.4.2 配置Logstash连接ElasticSearch

上面的数据,其实还是我们的原始数据,并没有经过处理,所以我们这个时候就需要使用到Logstash的其它功能了。我们继续修改配置文件

# 打开配置文件
vim  mogu-dashboard.conf

然后修改一下的值

input {
        beats {
                port => "5044"
        }
}
filter {
        mutate {
                split => {"message"=>"|"}
        }
        mutate {
                add_field => {
                "userId" => "%{[message][1]}"
                "visit" => "%{[message][2]}"
                "date" => "%{[message][3]}"
                }
        }
        mutate {
                convert => {
                "userId" => "integer"
                "visit" => "string"
                "date" => "string"
                }
        }
        mutate {
           remove_field => [ "host" ]
        }
}
#output {
# stdout { codec => rubydebug }
#}
output {
  elasticsearch {
    hosts => [ "127.0.0.1:9200"]
  }
}

然后再次启动

./bin/logstash -f mogu-dashboard.conf

其实能够看到,我们原来的数据,就经过了处理了,产生了新的字段

同时我们还可以对我们的数据,进行类型转换,为了方便我们的下游进行处理

  mutate {
    convert => {
    "userId" => "integer"
    "visit" => "string"
    "date" => "string"
    }
  }

4 Kibana分析业务

4.1 启动Kibana

我们最后就需要通过Kibana来展示我们的图形化数据

#启动
./bin/kibana
#通过浏览器进行访问
http://192.168.40.133:5601/app/kibana

4.1.1 添加到索引库

添加Logstash索引到Kibana中:

http://192.168.40.133:5601/app/kibana/indexPatterns/create

输入我们的匹配规则,然后匹配到logstash,然后选择时间字段后创建

4.1.2 创建柱形图

我们点击右侧Visualizations,然后开始创建图标

然后选择柱形图

在选择我们的索引

最后我们定义我们的X轴,选择按照时间进行添加

最后更新我们的页面,然后在选择最近的30分钟

就能够看到我们的日志在源源不断的生成了,同时我们可以对我们的这个图表进行保存

说明:x轴是时间,以天为单位,y轴是count数

保存:(my-dashboard-时间间隔的柱形图)

4.1.3 创建饼图

统计各个操作的数量,形成饼图。

保存:(my-dashboard-各个操作的饼图)

4.1.4 数据表格

在图标中,选择我们需要显示的字段即可

在数据探索中进行保存,并且保存,将各个操作的数据以表格的形式展现出来。

保存:(my-dashboard-表格)

4.2 制作Dashboard

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
44 1
|
2月前
|
Kubernetes API Docker
跟着iLogtail学习容器运行时与K8s下日志采集方案
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
|
2月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
46 2
|
3月前
|
Java 应用服务中间件 HSF
Java应用结构规范问题之AllLoggers接口获取异常日志的Logger实例的问题如何解决
Java应用结构规范问题之AllLoggers接口获取异常日志的Logger实例的问题如何解决
|
3月前
|
Kubernetes Shell 网络安全
【Azure K8S】记录AKS VMSS实例日志收集方式
【Azure K8S】记录AKS VMSS实例日志收集方式
|
3月前
|
存储 Linux 网络安全
【Azure 应用服务】App Service For Linux 如何在 Web 应用实例上住抓取网络日志
【Azure 应用服务】App Service For Linux 如何在 Web 应用实例上住抓取网络日志
|
3月前
|
存储 Kubernetes Java
在k8S中,容器内日志是怎么采集的?
在k8S中,容器内日志是怎么采集的?
|
3月前
|
数据采集 监控 Kubernetes
Job类日志采集问题之iLogtail以减小容器发现和开始采集的延时如何优化
Job类日志采集问题之iLogtail以减小容器发现和开始采集的延时如何优化
|
16天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
136 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
1月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
234 3
下一篇
无影云桌面