大数据Flink Streaming File Sink与File Sink

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据Flink Streaming File Sink与File Sink

1 介绍

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/connectors/streamfile_sink.html
https://blog.csdn.net/u013220482/article/details/100901471

1.1 场景描述

StreamingFileSink是Flink1.7中推出的新特性,是为了解决如下的问题:大数据业务场景中,经常有一种场景:外部数据发送到kafka中,flink作为中间件消费kafka数据并进行业务处理;处理完成之后的数据可能还需要写入到数据库或者文件系统中,比如写入hdfs中。

StreamingFileSink就可以用来将分区文件写入到支持 Flink FileSystem 接口的文件系统中,支持Exactly-Once语义。这种sink实现的Exactly-Once都是基于Flink checkpoint来实现的两阶段提交模式来保证的,主要应用在实时数仓、topic拆分、基于小时分析处理等场景下。


1.2 Bucket和SubTask、PartFile

⚫ Bucket

StreamingFileSink可向由Flink FileSystem抽象支持的文件系统写入分区文件(因为是流式写入,数据被视为无界)。该分区行为可配,默认按时间,具体来说每小时写入一个Bucket,该Bucket包括若干文件,内容是这一小时间隔内流中收到的所有record。

⚫ PartFile

每个Bukcket内部分为多个PartFile来存储输出数据,该Bucket生命周期内接收到数据的sink的每个

子任务至少有一个PartFile。而额外文件滚动由可配的滚动策略决定,默认策略是根据文件大小和打开超时(文件可以被打开的最大持续时间)以及文件最大不活动超时等决定是否滚动。Bucket和SubTask、PartFile关系如图所示

b2f18a4cdfa846f8a34b617215234126.png

2 案例演示

⚫ 需求

编写Flink程序,接收socket的字符串数据,然后将接收到的数据流式方式存储到hdfs

⚫ 开发步骤

1.初始化流计算运行环境

2.设置Checkpoint(10s)周期性启动

3.指定并行度为1

4.接入socket数据源,获取数据

5.指定文件编码格式为行编码格式

6.设置桶分配策略

7.设置文件滚动策略

8.指定文件输出配置

9.将streamingfilesink对象添加到环境

10.执行任务

⚫ 实现代码

package cn.oldlu.extend;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.core.fs.Path;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.OutputFileConfig;
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.DateTimeBucketAssigner;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;
import java.util.concurrent.TimeUnit;
public class StreamFileSinkDemo {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(TimeUnit.SECONDS.toMillis(10));
        env.setStateBackend(new FsStateBackend("file:///D:/ckp"));
        //2.source
        DataStreamSource<String> lines = env.socketTextStream("node1", 9999);
        //3.sink
        //设置sink的前缀和后缀
        //文件的头和文件扩展名
        //prefix-xxx-.txt
        OutputFileConfig config = OutputFileConfig
                .builder()
                .withPartPrefix("prefix")
                .withPartSuffix(".txt")
                .build();
        //设置sink的路径
        String outputPath = "hdfs://node1:8020/FlinkStreamFileSink/parquet";
        //创建StreamingFileSink
        final StreamingFileSink<String> sink = StreamingFileSink
                .forRowFormat(
                        new Path(outputPath),
                        new SimpleStringEncoder<String>("UTF-8"))
                /**
                 * 设置桶分配政策
                 * DateTimeBucketAssigner --默认的桶分配政策,默认基于时间的分配器,每小时产生一个桶,格式如下yyyy-MM-dd--HH
                 * BasePathBucketAssigner :将所有部分文件(part file)存储在基本路径中的分配器(单个全局桶)
                 */
                .withBucketAssigner(new DateTimeBucketAssigner<>())
                /**
                 * 有三种滚动政策
                 *  CheckpointRollingPolicy
                 *  DefaultRollingPolicy
                 *  OnCheckpointRollingPolicy
                 */
                .withRollingPolicy(
                        /**
                         * 滚动策略决定了写出文件的状态变化过程
                         * 1. In-progress :当前文件正在写入中
                         * 2. Pending :当处于 In-progress 状态的文件关闭(closed)了,就变为 Pending 状态
                         * 3. Finished :在成功的 Checkpoint 后,Pending 状态将变为 Finished 状态
                         *
                         * 观察到的现象
                         * 1.会根据本地时间和时区,先创建桶目录
                         * 2.文件名称规则:part-<subtaskIndex>-<partFileIndex>
                         * 3.在macos中默认不显示隐藏文件,需要显示隐藏文件才能看到处于In-progress和Pending状态的文件,因为文件是按照.开头命名的
                         *
                         */
                        DefaultRollingPolicy.builder()
                                .withRolloverInterval(TimeUnit.SECONDS.toMillis(2)) //设置滚动间隔
                                .withInactivityInterval(TimeUnit.SECONDS.toMillis(1)) //设置不活动时间间隔
                                .withMaxPartSize(1024 * 1024 * 1024) // 最大尺寸
                                .build())
                .withOutputFileConfig(config)
                .build();
        lines.addSink(sink).setParallelism(1);
        env.execute();
    }
}

3 File Sink介绍

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/connectors/file_sink.html

69a3f45e63ae45a895deec83113af396.png

新的 Data Sink API (Beta)之前发布的 Flink 版本中[1],已经支持了 source connector 工作在流批两种模式下,因此在Flink 1.12 中,社区着重实现了统一的 Data Sink API(FLIP-143)。新的抽象引入了write/commit 协议和一个更加模块化的接口。Sink 的实现者只需要定义 what 和 how:SinkWriter,用于写数据,并输出需要 commit 的内容(例如,committables);Committer 和GlobalCommitter,封装了如何处理 committables。框架会负责 when 和 where:即在什么时间,以及在哪些机器或进程中 commit。e3690dd3ffab4310af3d6e55d2f2e80d.png

这种模块化的抽象允许为 BATCH 和 STREAMING 两种执行模式,实现不同的运行时策略,以达到仅使用一种 sink 实现,也可以使两种模式都可以高效执行。Flink 1.12 中,提供了统一的FileSink connector,以替换现有的 StreamingFileSink connector (FLINK-19758)。其它的connector 也将逐步迁移到新的接口。Flink 1.12的 FileSink 为批处理和流式处理提供了一个统一的接收器,它将分区文件写入Flink文件系统抽象所支持的文件系统。这个文件系统连接器为批处理和流式处理提供了相同的保证,它是现有流式文件接收器的一种改进。


3.1 案例演示

package cn.oldlu.extend;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.connector.file.sink.FileSink;
import org.apache.flink.core.fs.Path;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.OutputFileConfig;
import org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.DateTimeBucketAssigner;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;
import java.util.concurrent.TimeUnit;
/**
 * Author oldlu
 * Desc
 */
public class FileSinkDemo {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(TimeUnit.SECONDS.toMillis(10));
        env.setStateBackend(new FsStateBackend("file:///D:/ckp"));
        //2.source
        DataStreamSource<String> lines = env.socketTextStream("node1", 9999);
        //3.sink
        //设置sink的前缀和后缀
        //文件的头和文件扩展名
        //prefix-xxx-.txt
        OutputFileConfig config = OutputFileConfig
                .builder()
                .withPartPrefix("prefix")
                .withPartSuffix(".txt")
                .build();
        //设置sink的路径
        String outputPath = "hdfs://node1:8020/FlinkFileSink/parquet";
        final FileSink<String> sink = FileSink
                .forRowFormat(new Path(outputPath), new SimpleStringEncoder<String>("UTF-8"))
                .withBucketAssigner(new DateTimeBucketAssigner<>())
                .withRollingPolicy(
                        DefaultRollingPolicy.builder()
                                .withRolloverInterval(TimeUnit.MINUTES.toMillis(15))
                                .withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
                                .withMaxPartSize(1024 * 1024 * 1024)
                                .build())
                .withOutputFileConfig(config)
                .build();
        lines.sinkTo(sink).setParallelism(1);
        env.execute();
    }
}
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
11天前
|
存储 SQL 大数据
用实时计算释放当下企业大数据潜能
本文整理自阿里云高级产品解决方案架构师王启华(敖北)老师在 Flink Forward Asia 2023 中闭门会的分享。
263 8
用实时计算释放当下企业大数据潜能
|
16天前
|
大数据 API 数据处理
揭秘!Flink如何从默默无闻到大数据界的璀璨明星?起源、设计理念与实战秘籍大公开!
【8月更文挑战第24天】Apache Flink是一款源自Stratosphere项目的开源流处理框架,由柏林理工大学等机构于2010至2014年间开发,并于2014年捐赠给Apache软件基金会。Flink设计之初即聚焦于提供统一的数据处理模型,支持事件时间处理、精确一次状态一致性等特性,实现了流批一体化处理。其核心优势包括高吞吐量、低延迟及强大的容错机制。
32 1
|
22天前
|
SQL Java Apache
实时计算 Flink版操作报错合集之本地启动时,如何处理报错:The file STDOUT does not exist on the TaskExecutor
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
22天前
|
SQL 关系型数据库 测试技术
实时数仓 Hologres操作报错合集之执行Flink的sink操作时出现报错,是什么原因
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
9天前
|
API C# Shell
WPF与Windows Shell完美融合:深入解析文件系统操作技巧——从基本文件管理到高级Shell功能调用,全面掌握WPF中的文件处理艺术
【8月更文挑战第31天】Windows Presentation Foundation (WPF) 是 .NET Framework 的关键组件,用于构建 Windows 桌面应用程序。WPF 提供了丰富的功能来创建美观且功能强大的用户界面。本文通过问题解答的形式,探讨了如何在 WPF 应用中集成 Windows Shell 功能,并通过具体示例代码展示了文件系统的操作方法,包括列出目录下的所有文件、创建和删除文件、移动和复制文件以及打开文件夹或文件等。
23 0
|
9天前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
25 0
|
11天前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
21 0
|
14天前
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
|
22天前
|
存储 SQL Java
实时数仓 Hologres产品使用合集之如何使用Flink的sink连接
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
4天前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
38 11

热门文章

最新文章

下一篇
DDNS