大数据Flink Time与Watermaker

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据Flink Time与Watermaker

1 Time分类

在Flink的流式处理中,会涉及到时间的不同概念,如下图所示:


事件时间EventTime: 事件真真正正发生产生的时间摄入时间IngestionTime: 事件到达Flink的时间处理时间ProcessingTime: 事件真正被处理/计算的时间

问题: 上面的三个时间,我们更关注哪一个?

答案: 更关注事件时间 !

因为: 事件时间更能反映事件的本质! 只要事件时间一产生就不会变化


2 EventTime的重要性


2.1 示例1

假设,你正在去往地下停车场的路上,并且打算用手机点一份外卖。选好了外卖后,你就用在线支付功能付款了,这个时候是11点59分。恰好这时,你走进了地下停车库,而这里并没有手机信号。因此外卖的在线支付并没有立刻成功,而支付系统一直在Retry重试“支付”这个操作。当你找到自己的车并且开出地下停车场的时候,已经是12点01分了。这个时候手机重新有了信号,手机上的支付数据成功发到了外卖在线支付系统,支付完成。在上面这个场景中你可以看到,

支付数据的事件时间是11点59分,而支付数据的处理时间是12点01分

问题:

如果要统计12之前的订单金额,那么这笔交易是否应被统计?

答案:

应该被统计,因为该数据的真真正正的产生时间为11点59分,即该数据的事件时间为11点59分,

事件时间能够真正反映/代表事件的本质! 所以一般在实际开发中会以事件时间作为计算标准


2.2 示例2

一条错误日志的内容为:2020-11:11 22:59:00 error NullPointExcep --事件时间进入Flink的时间为2020-11:11 23:00:00 --摄入时间到达Window的时间为2020-11:11 23:00:10 --处理时间

问题:

对于业务来说,要统计1h内的故障日志个数,哪个时间是最有意义的?

答案:

EventTime事件时间,因为bug真真正正产生的时间就是事件时间,只有事件时间才能真正反映/代

表事件的本质!


2.3 示例3

某 App 会记录用户的所有点击行为,并回传日志(在网络不好的情况下,先保存在本地,延后回传)。

A用户在 11:01:00 对 App 进行操作,B用户在 11:02:00 操作了 App,但是A用户的网络不太稳定,回传日志延迟了,导致我们在服务端先接受到B用户的消息,然后再接受到A用户的消息,消息乱序了。

问题:

如果这个是一个根据用户操作先后顺序,进行抢购的业务,那么是A用户成功还是B用户成功?

答案:

应该算A成功,因为A确实比B操作的早,但是实际中考虑到实现难度,可能直接按B成功算

也就是说,实际开发中希望基于事件时间来处理数据,但因为数据可能因为网络延迟等原因,出

现了乱序,按照事件时间处理起来有难度!


2.4 示例4

在实际环境中,经常会出现,因为网络原因,数据有可能会延迟一会才到达Flink实时处理系统。我们先来设想一下下面这个场景:原本应该被该窗口计算的数据因为网络延迟等原因晚到了,就有可能丢失了

689fbb0c6f9544a296353cd42bffaa35.png

2.5 总结


实际开发中我们希望基于事件时间来处理数据,但因为数据可能因为网络延迟等原因,出现了乱序或延迟到达,那么可能处理的结果不是我们想要的甚至出现数据丢失的情况,所以需要一种机制来解决一定程度上的数据乱序或延迟到底的问题!也就是我们接下来要学习的Watermaker水印机制/水位线机制


3 Watermaker水印机制/水位线机


3.1 什么是Watermaker?

Watermaker就是给数据再额外的加的一个时间列也就是Watermaker是个时间戳!


3.2 如何计算Watermaker?

Watermaker = 数据的事件时间 - 最大允许的延迟时间或乱序时间

注意:后面通过源码会发现,准确来说:

Watermaker = 当前窗口的最大的事件时间 - 最大允许的延迟时间或乱序时间

这样可以保证Watermaker水位线会一直上升(变大),不会下降


3.3 Watermaker有什么用?


之前的窗口都是按照系统时间来触发计算的,如: [10:00:00 ~ 10:00:10) 的窗口,

一但系统时间到了10:00:10就会触发计算,那么可能会导致延迟到达的数据丢失!

那么现在有了Watermaker,窗口就可以按照Watermaker来触发计算!

也就是说Watermaker是用来触发窗口计算的!


触发窗口计算的?


3.4 Watermaker如何

窗口计算的触发条件为:


窗口中有数据

Watermaker >= 窗口的结束时间

因为前面说到

Watermaker = 当前窗口的最大的事件时间 - 最大允许的延迟时间或乱序时间也就是说只要不断有数据来,就可以保证Watermaker水位线是会一直上升/变大的,不会下降/减小的所以最终一定是会触发窗口计算的

注意:

上面的触发公式进行如下变形:

Watermaker >= 窗口的结束时间

Watermaker = 当前窗口的最大的事件时间 - 最大允许的延迟时间或乱序时间

当前窗口的最大的事件时间 - 最大允许的延迟时间或乱序时间 >= 窗口的结束时间

当前窗口的最大的事件时间 >= 窗口的结束时间 + 最大允许的延迟时间或乱序时间

解Watermaker


3.5 图


a1a70df510054928a6aeac1331b2b058.png

4 Watermaker案例演示

4.1 需求

有订单数据,格式为: (订单ID,用户ID,时间戳/事件时间,订单金额)要求每隔5s,计算5秒内,每个用户的订单总金额

并添加Watermaker来解决一定程度上的数据延迟和数据乱序问题。


4.2 API


注意:一般我们都是直接使用Flink提供好的BoundedOutOfOrdernessTimestampExtractor

7b7be2d0f1b24b9a99f6a9cfaf5cd653.png

4.3 代码实现-1-开发版-掌握

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html


package cn.oldlu.watermaker;

package cn.oldlu.watermaker;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.time.Duration;
import java.util.Random;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
/**
 * Author oldlu
 * Desc
 * 模拟实时订单数据,格式为: (订单ID,用户ID,订单金额,时间戳/事件时间)
 * 要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
 * 并添加Watermaker来解决一定程度上的数据延迟和数据乱序问题。
 */
public class WatermakerDemo01_Develop {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //2.Source
        //模拟实时订单数据(数据有延迟和乱序)
        DataStream<Order> orderDS = env.addSource(new SourceFunction<Order>() {
            private boolean flag = true;
            @Override
            public void run(SourceContext<Order> ctx) throws Exception {
                Random random = new Random();
                while (flag) {
                    String orderId = UUID.randomUUID().toString();
                    int userId = random.nextInt(3);
                    int money = random.nextInt(100);
                    //模拟数据延迟和乱序!
                    long eventTime = System.currentTimeMillis() - random.nextInt(5) * 1000;
                    ctx.collect(new Order(orderId, userId, money, eventTime));
                    TimeUnit.SECONDS.sleep(1);
                }
            }
            @Override
            public void cancel() {
                flag = false;
            }
        });
        //3.Transformation
        //-告诉Flink要基于事件时间来计算!
        //env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);//新版本默认就是EventTime
        //-告诉Flnk数据中的哪一列是事件时间,因为Watermaker = 当前最大的事件时间 - 最大允许的延迟时间或乱序时间
        /*DataStream<Order> watermakerDS = orderDS.assignTimestampsAndWatermarks(
                new BoundedOutOfOrdernessTimestampExtractor<Order>(Time.seconds(3)) {//最大允许的延迟时间或乱序时间
                    @Override
                    public long extractTimestamp(Order element) {
                        return element.eventTime;
                        //指定事件时间是哪一列,Flink底层会自动计算:
                        //Watermaker = 当前最大的事件时间 - 最大允许的延迟时间或乱序时间
                    }
        });*/
        DataStream<Order> watermakerDS = orderDS
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                                .withTimestampAssigner((event, timestamp) -> event.getEventTime())
                );
        //代码走到这里,就已经被添加上Watermaker了!接下来就可以进行窗口计算了
        //要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
        DataStream<Order> result = watermakerDS
                .keyBy(Order::getUserId)
                //.timeWindow(Time.seconds(5), Time.seconds(5))
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .sum("money");
        //4.Sink
        result.print();
        //5.execute
        env.execute();
    }
    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    public static class Order {
        private String orderId;
        private Integer userId;
        private Integer money;
        private Long eventTime;
    }
}

4.4 代码实现-2-验证版-了解

package cn.oldlu.watermaker;

package cn.oldlu.watermaker;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.commons.lang3.time.FastDateFormat;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
/**
 * Author oldlu
 * Desc
 * 模拟实时订单数据,格式为: (订单ID,用户ID,订单金额,时间戳/事件时间)
 * 要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
 * 并添加Watermaker来解决一定程度上的数据延迟和数据乱序问题。
 */
public class WatermakerDemo02_Check {
    public static void main(String[] args) throws Exception {
        FastDateFormat df = FastDateFormat.getInstance("HH:mm:ss");
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //2.Source
        //模拟实时订单数据(数据有延迟和乱序)
        DataStreamSource<Order> orderDS = env.addSource(new SourceFunction<Order>() {
            private boolean flag = true;
            @Override
            public void run(SourceContext<Order> ctx) throws Exception {
                Random random = new Random();
                while (flag) {
                    String orderId = UUID.randomUUID().toString();
                    int userId = random.nextInt(3);
                    int money = random.nextInt(100);
                    //模拟数据延迟和乱序!
                    long eventTime = System.currentTimeMillis() - random.nextInt(5) * 1000;
                    System.out.println("发送的数据为: "+userId + " : " + df.format(eventTime));
                    ctx.collect(new Order(orderId, userId, money, eventTime));
                    TimeUnit.SECONDS.sleep(1);
                }
            }
            @Override
            public void cancel() {
                flag = false;
            }
        });
        //3.Transformation
        /*DataStream<Order> watermakerDS = orderDS
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                                .withTimestampAssigner((event, timestamp) -> event.getEventTime())
                );*/
        //开发中直接使用上面的即可
        //学习测试时可以自己实现
        DataStream<Order> watermakerDS = orderDS
                .assignTimestampsAndWatermarks(
                        new WatermarkStrategy<Order>() {
                            @Override
                            public WatermarkGenerator<Order> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
                                return new WatermarkGenerator<Order>() {
                                    private int userId = 0;
                                    private long eventTime = 0L;
                                    private final long outOfOrdernessMillis = 3000;
                                    private long maxTimestamp = Long.MIN_VALUE + outOfOrdernessMillis + 1;
                                    @Override
                                    public void onEvent(Order event, long eventTimestamp, WatermarkOutput output) {
                                        userId = event.userId;
                                        eventTime = event.eventTime;
                                        maxTimestamp = Math.max(maxTimestamp, eventTimestamp);
                                    }
                                    @Override
                                    public void onPeriodicEmit(WatermarkOutput output) {
                                        //Watermaker = 当前最大事件时间 - 最大允许的延迟时间或乱序时间
                                        Watermark watermark = new Watermark(maxTimestamp - outOfOrdernessMillis - 1);
                                        System.out.println("key:" + userId + ",系统时间:" + df.format(System.currentTimeMillis()) + ",事件时间:" + df.format(eventTime) + ",水印时间:" + df.format(watermark.getTimestamp()));
                                        output.emitWatermark(watermark);
                                    }
                                };
                            }
                        }.withTimestampAssigner((event, timestamp) -> event.getEventTime())
                );
        //代码走到这里,就已经被添加上Watermaker了!接下来就可以进行窗口计算了
        //要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
       /* DataStream<Order> result = watermakerDS
                 .keyBy(Order::getUserId)
                //.timeWindow(Time.seconds(5), Time.seconds(5))
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .sum("money");*/
        //开发中使用上面的代码进行业务计算即可
        //学习测试时可以使用下面的代码对数据进行更详细的输出,如输出窗口触发时各个窗口中的数据的事件时间,Watermaker时间
        DataStream<String> result = watermakerDS
                .keyBy(Order::getUserId)
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                //把apply中的函数应用在窗口中的数据上
                //WindowFunction<IN, OUT, KEY, W extends Window>
                .apply(new WindowFunction<Order, String, Integer, TimeWindow>() {
                    @Override
                    public void apply(Integer key, TimeWindow window, Iterable<Order> input, Collector<String> out) throws Exception {
                        //准备一个集合用来存放属于该窗口的数据的事件时间
                        List<String> eventTimeList = new ArrayList<>();
                        for (Order order : input) {
                            Long eventTime = order.eventTime;
                            eventTimeList.add(df.format(eventTime));
                        }
                        String outStr = String.format("key:%s,窗口开始结束:[%s~%s),属于该窗口的事件时间:%s",
                                key.toString(), df.format(window.getStart()), df.format(window.getEnd()), eventTimeList);
                        out.collect(outStr);
                    }
                });
        //4.Sink
        result.print();
        //5.execute
        env.execute();
    }
    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    public static class Order {
        private String orderId;
        private Integer userId;
        private Integer money;
        private Long eventTime;
    }
}

5 Allowed Lateness案例演示

5.1 需求

有订单数据,格式为: (订单ID,用户ID,时间戳/事件时间,订单金额)

要求每隔5s,计算5秒内,每个用户的订单总金额

并添加Watermaker来解决一定程度上的数据延迟和数据乱序问题。

并使用OutputTag+allowedLateness解决数据丢失问题


5.2 API 2bd53bfeb12a4dcd8c6afcdc977dc6a9.png
package cn.oldlu.watermaker;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.OutputTag;
import java.time.Duration;
import java.util.Random;
import java.util.UUID;
/**
 * Author oldlu
 * Desc
 * 模拟实时订单数据,格式为: (订单ID,用户ID,订单金额,时间戳/事件时间)
 * 要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
 * 并添加Watermaker来解决一定程度上的数据延迟和数据乱序问题。
 */
public class WatermakerDemo03_AllowedLateness {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //2.Source
        //模拟实时订单数据(数据有延迟和乱序)
        DataStreamSource<Order> orderDS = env.addSource(new SourceFunction<Order>() {
            private boolean flag = true;
            @Override
            public void run(SourceContext<Order> ctx) throws Exception {
                Random random = new Random();
                while (flag) {
                    String orderId = UUID.randomUUID().toString();
                    int userId = random.nextInt(3);
                    int money = random.nextInt(100);
                    //模拟数据延迟和乱序!
                    long eventTime = System.currentTimeMillis() - random.nextInt(10) * 1000;
                    ctx.collect(new Order(orderId, userId, money, eventTime));
                    //TimeUnit.SECONDS.sleep(1);
                }
            }
            @Override
            public void cancel() {
                flag = false;
            }
        });
        //3.Transformation
        DataStream<Order> watermakerDS = orderDS
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                                .withTimestampAssigner((event, timestamp) -> event.getEventTime())
                );
        //代码走到这里,就已经被添加上Watermaker了!接下来就可以进行窗口计算了
        //要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
        OutputTag<Order> outputTag = new OutputTag<>("Seriouslylate", TypeInformation.of(Order.class));
        SingleOutputStreamOperator<Order> result = watermakerDS
                .keyBy(Order::getUserId)
                //.timeWindow(Time.seconds(5), Time.seconds(5))
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .allowedLateness(Time.seconds(5))
                .sideOutputLateData(outputTag)
                .sum("money");
        DataStream<Order> result2 = result.getSideOutput(outputTag);
        //4.Sink
        result.print("正常的数据和迟到不严重的数据");
        result2.print("迟到严重的数据");
        //5.execute
        env.execute();
    }
    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    public static class Order {
        private String orderId;
        private Integer userId;
        private Integer money;
        private Long eventTime;
    }
}
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
20天前
|
存储 SQL 大数据
用实时计算释放当下企业大数据潜能
本文整理自阿里云高级产品解决方案架构师王启华(敖北)老师在 Flink Forward Asia 2023 中闭门会的分享。
287 8
用实时计算释放当下企业大数据潜能
|
26天前
|
大数据 API 数据处理
揭秘!Flink如何从默默无闻到大数据界的璀璨明星?起源、设计理念与实战秘籍大公开!
【8月更文挑战第24天】Apache Flink是一款源自Stratosphere项目的开源流处理框架,由柏林理工大学等机构于2010至2014年间开发,并于2014年捐赠给Apache软件基金会。Flink设计之初即聚焦于提供统一的数据处理模型,支持事件时间处理、精确一次状态一致性等特性,实现了流批一体化处理。其核心优势包括高吞吐量、低延迟及强大的容错机制。
35 1
|
28天前
|
数据安全/隐私保护 流计算
Flink四大基石——2.Time
Flink四大基石——2.Time
32 1
|
1月前
|
消息中间件 大数据 Kafka
"Apache Flink:重塑大数据实时处理新纪元,卓越性能与灵活性的实时数据流处理王者"
【8月更文挑战第10天】Apache Flink以卓越性能和高度灵活性在大数据实时处理领域崭露头角。它打破批处理与流处理的传统界限,采用统一模型处理有界和无界数据流,提升了开发效率和系统灵活性。Flink支持毫秒级低延迟处理,通过时间窗口、状态管理和自动并行化等关键技术确保高性能与可靠性。示例代码展示了如何使用Flink从Kafka读取实时数据并进行处理,简明扼要地呈现了Flink的强大能力。随着技术进步,Flink将在更多场景中提供高效可靠的解决方案,持续引领大数据实时处理的发展趋势。
68 7
|
18天前
|
API C# Shell
WPF与Windows Shell完美融合:深入解析文件系统操作技巧——从基本文件管理到高级Shell功能调用,全面掌握WPF中的文件处理艺术
【8月更文挑战第31天】Windows Presentation Foundation (WPF) 是 .NET Framework 的关键组件,用于构建 Windows 桌面应用程序。WPF 提供了丰富的功能来创建美观且功能强大的用户界面。本文通过问题解答的形式,探讨了如何在 WPF 应用中集成 Windows Shell 功能,并通过具体示例代码展示了文件系统的操作方法,包括列出目录下的所有文件、创建和删除文件、移动和复制文件以及打开文件夹或文件等。
34 0
|
18天前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
32 0
|
21天前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
28 0
|
24天前
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
|
2月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
697 7
阿里云实时计算Flink在多行业的应用和实践
|
1月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。