大数据Spark实时搜索日志实时分析

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
日志服务 SLS,月写入数据量 50GB 1个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 大数据Spark实时搜索日志实时分析

1 业务场景

百度搜索风云榜(http://top.baidu.com/)以数亿网民的单日搜索行为作为数据基础,以搜索关键词为统计对象建立权威全面的各类关键词排行榜,以榜单形式向用户呈现基于百度海量搜索数据的排行信息,线上覆盖十余个行业类别,一百多个榜单

在【热点榜单】中,可以看到依据搜索关键词实时统计各种维度热点,下图展示【实时热点】。

仿【百度搜索风云榜】对用户使用百度搜索时日志进行分析:【百度搜索日志实时分析】,主要业务需求如下三个方面:

  • 业务一:搜索日志数据存储HDFS,实时对日志数据进行ETL提取转换,存储HDFS文件系统;
  • 业务二:百度热搜排行榜Top10,累加统计所有用户搜索词次数,获取Top10搜索词及次数;
  • 业务三:近期时间内热搜Top10,统计最近一段时间范围(比如,最近半个小时或最近2个小时)
    内用户搜索词次数,获取Top10搜索词及次数;
  • 开发Maven Project中目录结构如下所示:

2 初始化环境

编程实现业务之前,首先编写程序模拟产生用户使用百度搜索产生日志数据和创建工具类StreamingContextUtils提供StreamingContext对象与从Kafka接收数据方法。

2.1 创建 Topic

启动Kafka Broker服务,创建Topic【search-log-topic】,命令如下所示:

# 1. 启动Zookeeper 服务
zookeeper-daemon.sh start
# 2. 启动Kafka 服务
kafka-daemon.sh start
# 3. Create Topic
kafka-topics.sh --create --topic search-log-topic \
--partitions 3 --replication-factor 1 --zookeeper node1.oldlut.cn:2181/kafka200
# List Topics
kafka-topics.sh --list --zookeeper node1.oldlut.cn:2181/kafka200
# Producer
kafka-console-producer.sh --topic search-log-topic --broker-list node1.oldlut.cn:9092
# Consumer
kafka-console-consumer.sh --topic search-log-topic \
--bootstrap-server node1.oldlut.cn:9092 --from-beginning

2.2 模拟日志数据

模拟用户搜索日志数据,字段信息封装到CaseClass样例类【SearchLog】类,代码如下:

package cn.oldlut.spark.app.mock
/**
 * 用户百度搜索时日志数据封装样例类CaseClass
 * <p>
 *
 * @param sessionId 会话ID
 * @param ip        IP地址
 * @param datetime  搜索日期时间
 * @param keyword   搜索关键词
 */
case class SearchLog(
                      sessionId: String, //
                      ip: String, //
                      datetime: String, //
                      keyword: String //
                    ) {
  override def toString: String = s"$sessionId,$ip,$datetime,$keyword"
}
`` `
模拟产生搜索日志数据类 【 MockSearchLogs 】 具体代码如下 :
`` `
package cn.oldlut.spark.app.mock
import java.util.{Properties, UUID}
import org.apache.commons.lang3.time.FastDateFormat
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.kafka.common.serialization.StringSerializer
import scala.util.Random
/**
 * 模拟产生用户使用百度搜索引擎时,搜索查询日志数据,包含字段为:
 * uid, ip, search_datetime, search_keyword
 */
object MockSearchLogs {
  def main(args: Array[String]): Unit = {
    // 搜索关键词,直接到百度热搜榜获取即可
    val keywords: Array[String] = Array("罗志祥", "谭卓疑", "当当网", "裸海蝶", "张建国")
    // 发送Kafka Topic
    val props = new Properties()
    props.put("bootstrap.servers", "node1.oldlut.cn:9092")
    props.put("acks", "1")
    props.put("retries", "3")
    props.put("key.serializer", classOf[StringSerializer].getName)
    props.put("value.serializer", classOf[StringSerializer].getName)
    val producer = new KafkaProducer[String, String](props)
    val random: Random = new Random()
    while (true) {
      // 随机产生一条搜索查询日志
      val searchLog: SearchLog = SearchLog(
        getUserId(), //
        getRandomIp(), //
        getCurrentDateTime(), //
        keywords(random.nextInt(keywords.length)) //
      )
      println(searchLog.toString)
      Thread.sleep(10 + random.nextInt(100))
      val record = new ProducerRecord[String, String]("search-log-topic", searchLog.toString)
      producer.send(record)
    }
    // 关闭连接
    producer.close()
  }
  /**
   * 随机生成用户SessionId
   */
  def getUserId(): String = {
    val uuid: String = UUID.randomUUID().toString
    uuid.replaceAll("-", "").substring(16)
  }
  /**
   * 获取当前日期时间,格式为yyyyMMddHHmmssSSS
   */
  def getCurrentDateTime(): String = {
    val format = FastDateFormat.getInstance("yyyyMMddHHmmssSSS")
    val nowDateTime: Long = System.currentTimeMillis()
    format.format(nowDateTime)
  }
  /**
   * 获取随机IP地址
   */
  def getRandomIp(): String = {
    // ip范围
    val range: Array[(Int, Int)] = Array(
      (607649792, 608174079), //36.56.0.0-36.63.255.255
      (1038614528, 1039007743), //61.232.0.0-61.237.255.255
      (1783627776, 1784676351), //106.80.0.0-106.95.255.255
      (2035023872, 2035154943), //121.76.0.0-121.77.255.255
      (2078801920, 2079064063), //123.232.0.0-123.235.255.255
      (-1950089216, -1948778497), //139.196.0.0-139.215.255.255
      (-1425539072, -1425014785), //171.8.0.0-171.15.255.255
      (-1236271104, -1235419137), //182.80.0.0-182.92.255.255
      (-770113536, -768606209), //210.25.0.0-210.47.255.255
      (-569376768, -564133889) //222.16.0.0-222.95.255.255
    )
    // 随机数:IP地址范围下标
    val random = new Random()
    val index = random.nextInt(10)
    val ipNumber: Int = range(index)._1 + random.nextInt(range(index)._2 - range(index)._1)
    //println(s"ipNumber = ${ipNumber}")
    // 转换Int类型IP地址为IPv4格式
    number2IpString(ipNumber)
  }
  /**
   * 将Int类型IPv4地址转换为字符串类型
   */
  def number2IpString(ip: Int): String = {
    val buffer: Array[Int] = new Array[Int](4)
    buffer(0) = (ip >> 24) & 0xff
    buffer(1) = (ip >> 16) & 0xff
    buffer(2) = (ip >> 8) & 0xff
    buffer(3) = ip & 0xff
    // 返回IPv4地址
    buffer.mkString(".")
  }
}

运行应用程序,源源不断产生日志数据,发送至Kafka(同时在控制台打印),截图如下:

2.3 StreamingContextUtils 工具类

所有SparkStreaming应用都需要构建StreamingContext实例对象,并且从采用New KafkaConsumer API消费Kafka数据,编写工具类【StreamingContextUtils】,提供两个方法:

  • 方法一:getStreamingContext,获取StreamingContext实例对象
  • 方法二:consumerKafka,消费Kafka Topic中数据
    具体代码如下:
package cn.oldlut.spark.app
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
 * 工具类提供:构建流式应用上下文StreamingContext实例对象和从Kafka Topic消费数据
 */
object StreamingContextUtils {
  /**
   * 获取StreamingContext实例,传递批处理时间间隔
   *
   * @param batchInterval 批处理时间间隔,单位为秒
   */
  def getStreamingContext(clazz: Class[_], batchInterval: Int): StreamingContext = {
    // i. 创建SparkConf对象,设置应用配置信息
    val sparkConf = new SparkConf()
      .setAppName(clazz.getSimpleName.stripSuffix("$"))
      .setMaster("local[3]")
      // 设置Kryo序列化
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .registerKryoClasses(Array(classOf[ConsumerRecord[String, String]]))
    // ii.创建流式上下文对象, 传递SparkConf对象和时间间隔
    val context = new StreamingContext(sparkConf, Seconds(batchInterval))
    // iii. 返回
    context
  }
  /**
   * 从指定的Kafka Topic中消费数据,默认从最新偏移量(largest)开始消费
   *
   * @param ssc       StreamingContext实例对象
   * @param topicName 消费Kafka中Topic名称
   */
  def consumerKafka(ssc: StreamingContext, topicName: String): DStream[ConsumerRecord[String, String]] = {
    // i.位置策略
    val locationStrategy: LocationStrategy = LocationStrategies.PreferConsistent
    // ii.读取哪些Topic数据
    val topics = Array(topicName)
    // iii.消费Kafka 数据配置参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "node1.oldlut.cn:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "group_id_streaming_0001",
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )
    // iv.消费数据策略
    val consumerStrategy: ConsumerStrategy[String, String] = ConsumerStrategies.Subscribe(
      topics, kafkaParams
    )
    // v.采用新消费者API获取数据,类似于Direct方式
    val kafkaDStream: DStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
      ssc, locationStrategy, consumerStrategy
    )
    // vi.返回DStream
    kafkaDStream
  }
}

3 实时数据ETL存储

实时从Kafka Topic消费数据,提取ip地址字段,调用【ip2Region】库解析为省份和城市,存储到HDFS文件中,设置批处理时间间隔BatchInterval为10秒,完整代码如下:

package cn.oldlut.spark.app.etl
import cn.oldlut.spark.app.StreamingContextUtils
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.DStream
import org.lionsoul.ip2region.{DataBlock, DbConfig, DbSearcher}
/**
 * 实时消费Kafka Topic数据,经过ETL(过滤、转换)后,保存至HDFS文件系统中,BatchInterval为:10s
 */
object StreamingETLHdfs {
  def main(args: Array[String]): Unit = {
    // 1. 获取StreamingContext实例对象
    val ssc: StreamingContext = StreamingContextUtils.getStreamingContext(this.getClass, 10)
    // 2. 从Kafka消费数据,使用Kafka New Consumer API
    val kafkaDStream: DStream[ConsumerRecord[String, String]] = StreamingContextUtils
      .consumerKafka(ssc, "search-log-topic")
    // 3. 数据ETL:过滤不合格数据及转换IP地址为省份和城市,并存储HDFS上
    kafkaDStream.foreachRDD { (rdd, time) =>
      // i. message不为null,且分割为4个字段
      val kafkaRDD: RDD[ConsumerRecord[String, String]] = rdd.filter { record =>
        val message: String = record.value()
        null != message && message.trim.split(",").length == 4
      }
      // ii. 解析IP地址
      val etlRDD: RDD[String] = kafkaRDD.mapPartitions { iter =>
        // 创建DbSearcher对象,针对每个分区创建一个,并不是每条数据创建一个
        val dbSearcher = new DbSearcher(new DbConfig(), "dataset/ip2region.db")
        iter.map { record =>
          val Array(_, ip, _, _) = record.value().split(",")
          // 依据IP地址解析
          val dataBlock: DataBlock = dbSearcher.btreeSearch(ip)
          val region: String = dataBlock.getRegion
          val Array(_, _, province, city, _) = region.split("\\|")
          // 组合字符串
          s"${record.value()},$province,$city"
        }
      }
      // iii. 保存至文件
      val savePath = s"datas/streaming/etl/search-log-${time.milliseconds}"
      if (!etlRDD.isEmpty()) {
        etlRDD.coalesce(1).saveAsTextFile(savePath)
      }
    }
    // 4.启动流式应用,一直运行,直到程序手动关闭或异常终止
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(stopSparkContext = true, stopGracefully = true)
  }
}

运行模拟日志数据程序和ETL应用程序,查看实时数据ETL后保存文件,截图如下:

4 实时状态更新统计

实 时 累 加 统 计 用 户 各 个 搜 索 词 出 现 的 次 数 , 在 SparkStreaming 中 提 供 函 数【updateStateByKey】实现累加统计,Spark 1.6提供【mapWithState】函数状态统计,性能更好,实际应用中也推荐使用。

4.1 updateStateByKey 函数

状态更新函数【updateStateByKey】表示依据Key更新状态,要求DStream中数据类型为【Key/Value】对二元组,函数声明如下:

将每批次数据状态,按照Key与以前状态,使用定义函数【updateFunc】进行更新,示意图如下:

文档: http://spark.apache.org/docs/2.4.5/streaming-programming-guide.html#updatestatebykey-operation

针对搜索词词频统计WordCount,状态更新逻辑示意图如下:

以前的状态数据,保存到Checkpoint检查点目录中,所以在代码中需要设置Checkpoint检查点目录:

完整演示代码如下:

package cn.oldlut.spark.app.state
import cn.oldlut.spark.app.StreamingContextUtils
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.DStream
/**
 * 实时消费Kafka Topic数据,累加统计各个搜索词的搜索次数,实现百度搜索风云榜
 */
object StreamingUpdateState {
  def main(args: Array[String]): Unit = {
    // 1. 获取StreamingContext实例对象
    val ssc: StreamingContext = StreamingContextUtils.getStreamingContext(this.getClass, 5)
    // TODO: 设置检查点目录
    ssc.checkpoint(s"datas/streaming/state-${System.nanoTime()}")
    // 2. 从Kafka消费数据,使用Kafka New Consumer API
    val kafkaDStream: DStream[ConsumerRecord[String, String]] = StreamingContextUtils
      .consumerKafka(ssc, "search-log-topic")
    // 3. 对每批次的数据进行搜索词次数统计
    val reduceDStream: DStream[(String, Int)] = kafkaDStream.transform { rdd =>
      val reduceRDD = rdd
        // 过滤不合格的数据
        .filter { record =>
          val message: String = record.value()
          null != message && message.trim.split(",").length == 4
        }
        // 提取搜索词,转换数据为二元组,表示每个搜索词出现一次
        .map { record =>
          val keyword: String = record.value().trim.split(",").last
          keyword -> 1
        }
        // 按照单词分组,聚合统计
        .reduceByKey((tmp, item) => tmp + item) // TODO: 先聚合,再更新,优化
      reduceRDD // 返回
    }
    /*
    def updateStateByKey[S: ClassTag](
    // 状态更新函数
    updateFunc: (Seq[V], Option[S]) => Option[S]
    ): DStream[(K, S)]
    第一个参数:Seq[V]
    表示的是相同Key的所有Value值
    第二个参数:Option[S]
    表示的是Key的以前状态,可能有值Some,可能没值None,使用Option封装
    S泛型,具体类型有业务具体,此处是词频:Int类型
    */
    val stateDStream: DStream[(String, Int)] = reduceDStream.updateStateByKey(
      (values: Seq[Int], state: Option[Int]) => {
        // a. 获取以前状态信息
        val previousState = state.getOrElse(0)
        // b. 获取当前批次中Key对应状态
        val currentState = values.sum
        // c. 合并状态
        val latestState = previousState + currentState
        // d. 返回最新状态
        Some(latestState)
      }
    )
    // 5. 将结果数据输出 -> 将每批次的数据处理以后输出
    stateDStream.print()
    // 6.启动流式应用,一直运行,直到程序手动关闭或异常终止
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(stopSparkContext = true, stopGracefully = true)
  }
}

运行应用程序,通过WEB UI界面可以发现,将以前状态保存到Checkpoint检查点目录中,更新时在读取。

此外,updateStateByKey函数有很多重载方法,依据不同业务需求选择合适的方式使用。

4.2 mapWithState 函数

Spark 1.6提供新的状态更新函数【mapWithState】,mapWithState函数也会统计全局的key的状态,但是如果没有数据输入,便不会返回之前的key的状态,只是关心那些已经发生的变化的key,对于没有数据输入,则不会返回那些没有变化的key的数据。

这样的话,即使数据量很大,checkpoint也不会像updateStateByKey那样,占用太多的存储,效率比较高;

ae55e536ed4d4e40940c5d3db1ef7309.png

需要构建StateSpec对象,对状态State进行封装,可以进行相关操作,类的声明定义如下:

状态函数【mapWithState】参数相关说明:

完整演示代码如下:

package cn.oldlut.spark.app.state
import cn.oldlut.spark.app.StreamingContextUtils
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{State, StateSpec, StreamingContext}
import org.apache.spark.streaming.dstream.DStream
/**
 * 实时消费Kafka Topic数据,累加统计各个搜索词的搜索次数,实现百度搜索风云榜
 */
object StreamingMapWithState {
  def main(args: Array[String]): Unit = {
    // 1. 获取StreamingContext实例对象
    val ssc: StreamingContext = StreamingContextUtils.getStreamingContext(this.getClass, 5)
    // TODO: 设置检查点目录
    ssc.checkpoint(s"datas/streaming/state-${System.nanoTime()}")
    // 2. 从Kafka消费数据,使用Kafka New Consumer API
    val kafkaDStream: DStream[ConsumerRecord[String, String]] = StreamingContextUtils
      .consumerKafka(ssc, "search-log-topic")
    // 3. 对每批次的数据进行搜索词进行次数统计
    val reduceDStream: DStream[(String, Int)] = kafkaDStream.transform { rdd =>
      val reduceRDD: RDD[(String, Int)] = rdd
        // 过滤不合格的数据
        .filter { record =>
          val message: String = record.value()
          null != message && message.trim.split(",").length == 4
        }
        // 提取搜索词,转换数据为二元组,表示每个搜索词出现一次
        .map { record =>
          val keyword: String = record.value().trim.split(",").last
          keyword -> 1
        }
        // 按照单词分组,聚合统计
        .reduceByKey((tmp, item) => tmp + item) // TODO: 先聚合,再更新,优化
      // 返回
      reduceRDD
    }
    // TODO: 4、实时累加统计搜索词搜索次数,使用mapWithState函数
    /*
    按照Key来更新状态的,一条一条数据的更新状态
    def mapWithState[StateType: ClassTag, MappedType: ClassTag](
    spec: StateSpec[K, V, StateType, MappedType]
    ): MapWithStateDStream[K, V, StateType, MappedType]
    a. 通过函数源码发现参数使用对象
    StateSpec 实例对象
    b. StateSpec
    表示对状态封装,里面涉及到相关数据类型
    c. 如何构建StateSpec对象实例呢??
    StateSpec 伴生对象中function函数构建对象
    def function[KeyType, ValueType, StateType, MappedType](
    // 从函数名称可知,针对每条数据更新Key的转态信息
    mappingFunction: (KeyType, Option[ValueType], State[StateType]) => MappedType
    ): StateSpec[KeyType, ValueType, StateType, MappedType]
    */
    // 状态更新函数,针对每条数据进行更新状态
    val spec: StateSpec[String, Int, Int, (String, Int)] = StateSpec.function(
      // (KeyType, Option[ValueType], State[StateType]) => MappedType
      (keyword: String, countOption: Option[Int], state: State[Int]) => {
        // a. 获取当前批次中搜索词搜索次数
        val currentState: Int = countOption.getOrElse(0)
        // b. 从以前状态中获取搜索词搜索次数
        val previousState = state.getOption().getOrElse(0)
        // c. 搜索词总的搜索次数
        val latestState = currentState + previousState
        // d. 更行状态
        state.update(latestState)
        // e. 返回最新省份销售订单额
        (keyword, latestState)
      }
    )
    // 调用mapWithState函数进行实时累加状态统计
    val stateDStream: DStream[(String, Int)] = reduceDStream.mapWithState(spec)
    // 5. 将结果数据输出 -> 将每批次的数据处理以后输出
    stateDStream.print()
    // 6.启动流式应用,一直运行,直到程序手动关闭或异常终止
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(stopSparkContext = true, stopGracefully = true)
  }
}

运行程序可以发现,当Key(搜索单词)没有出现时,不会更新状态,仅仅更新当前批次中出现的Key的状态。

mapWithState 实现有状态管理主要是通过两点:a)、历史状态需要在内存中维护,这里必需的了,updateStateBykey也是一样;b)、自定义更新状态的mappingFunction,这些就是具体的业务功能实现逻辑了(什么时候需要更新状态)


33a4ee8b3a4f4f90ba00dd74139b08e2.png

首先数据像水流一样从左侧的箭头流入,把mapWithState看成一个转换器的话,mappingFunc就是转换的规则,流入的新数据(key-value)结合历史状态(通过key从内存中获取的历史状态)进行一些自定义逻辑的更新等操作,最终从红色箭头中流出。

5 实时窗口统计

SparkStreaming中提供一些列窗口函数,方便对窗口数据进行分析,文档:

http://spark.apache.org/docs/2.4.5/streaming-programming-guide.html#window-operations

在实际项目中,很多时候需求:每隔一段时间统计最近数据状态,并不是对所有数据进行统计,称为趋势统计或者窗口统计,SparkStreaming中提供相关函数实现功能,业务逻辑如下:

针对用户百度搜索日志数据,实现【近期时间内热搜Top10】,统计最近一段时间范围(比如,最近半个小时或最近2个小时)内用户搜索词次数,获取Top10搜索词及次数。窗口函数【window】声明如下,包含两个参数:窗口大小(WindowInterval,每次统计数据范围)和滑动大小(每隔多久统计一次),都必须是批处理时间间隔BatchInterval整数倍。

4e1fa1911431414fba2fbe93a3017613.png

案例完整实现代码如下,为了演示方便,假设BatchInterval为2秒,WindowInterval

为4秒,SlideInterval为2秒。

package cn.oldlut.spark.app.window
import cn.oldlut.spark.app.StreamingContextUtils
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
 * 实时消费Kafka Topic数据,每隔一段时间统计最近搜索日志中搜索词次数
 * 批处理时间间隔:BatchInterval = 2s
 * 窗口大小间隔:WindowInterval = 4s
 * 滑动大小间隔:SliderInterval = 2s
 */
object StreamingWindow {
  def main(args: Array[String]): Unit = {
    // Streaming应用BatchInterval
    val BATCH_INTERVAL: Int = 2
    // Streaming应用窗口大小
    val WINDOW_INTERVAL: Int = BATCH_INTERVAL * 2
    val SLIDER_INTERVAL: Int = BATCH_INTERVAL * 1
    // 1. 获取StreamingContext实例对象
    val ssc: StreamingContext = StreamingContextUtils.getStreamingContext(this.getClass, BATCH_INTERVAL)
    // 2. 从Kafka消费数据,使用Kafka New Consumer API
    val kafkaDStream: DStream[String] = StreamingContextUtils
      .consumerKafka(ssc, "search-log-topic")
      .map(record => record.value())
    // TODO: 添加窗口,设置对应参数
    /*
    def window(windowDuration: Duration, slideDuration: Duration): DStream[T]
    警告信息:
    ERROR KafkaRDD: Kafka ConsumerRecord is not serializable.
    Use .map to extract fields before calling .persist or .window
    */
    val windowDStream: DStream[String] = kafkaDStream.window(
      Seconds(WINDOW_INTERVAL), Seconds(SLIDER_INTERVAL)
    )
    // 4. 对每批次的数据进行搜索词进行次数统计
    val countDStream: DStream[(String, Int)] = windowDStream.transform { rdd =>
      val resultRDD = rdd
        // 过滤不合格的数据
        .filter(message => null != message && message.trim.split(",").length == 4)
        // 提取搜索词,转换数据为二元组,表示每个搜索词出现一次
        .map { message =>
          val keyword: String = message.trim.split(",").last
          keyword -> 1
        }
        // 按照单词分组,聚合统计
        .reduceByKey((tmp, item) => tmp + item)
      // 返回
      resultRDD
    }
    // 5. 将结果数据输出 -> 将每批次的数据处理以后输出
    countDStream.print()
    // 6.启动流式应用,一直运行,直到程序手动关闭或异常终止
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(stopSparkContext = true, stopGracefully = true)
  }
}

SparkStreaming中同时提供将窗口Window设置与聚合reduceByKey合在一起的函数,为了更加方便编程。

使用【reduceByKeyAndWindow】函数,修改上述代码,实现窗口统计,具体代码如下:

package cn.oldlut.spark.app.window
import cn.oldlut.spark.app.StreamingContextUtils
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
 * 实时消费Kafka Topic数据,每隔一段时间统计最近搜索日志中搜索词次数
 * 批处理时间间隔:BatchInterval = 2s
 * 窗口大小间隔:WindowInterval = 4s
 * 滑动大小间隔:SliderInterval = 2s
 */
object StreamingReduceWindow {
  def main(args: Array[String]): Unit = {
    // Streaming应用BatchInterval
    val BATCH_INTERVAL: Int = 2
    // Streaming应用窗口大小
    val WINDOW_INTERVAL: Int = BATCH_INTERVAL * 2
    val SLIDER_INTERVAL: Int = BATCH_INTERVAL * 1
    // 1. 获取StreamingContext实例对象
    val ssc: StreamingContext = StreamingContextUtils.getStreamingContext(this.getClass, BATCH_INTERVAL)
    // 2. 从Kafka消费数据,使用Kafka New Consumer API
    val kafkaDStream: DStream[String] = StreamingContextUtils
      .consumerKafka(ssc, "search-log-topic")
      .map(recored => recored.value())
    // 3. 对每批次的数据进行搜索词进行次数统计
    val etlDStream: DStream[(String, Int)] = kafkaDStream.transform { rdd =>
      val etlRDD = rdd
        // 过滤不合格的数据
        .filter(message => null != message && message.trim.split(",").length == 4)
        // 提取搜索词,转换数据为二元组,表示每个搜索词出现一次
        .map { message =>
          val keyword: String = message.trim.split(",").last
          keyword -> 1
        }
      etlRDD // 返回
    }
    // 4. 对获取流式数据进行ETL后,使用窗口聚合函数统计计算
    /*
    def reduceByKeyAndWindow(
    reduceFunc: (V, V) => V, // 聚合函数
    windowDuration: Duration, // 窗口大小
    slideDuration: Duration // 滑动大小
    ): DStream[(K, V)]
    */
    val resultDStream: DStream[(String, Int)] = etlDStream.reduceByKeyAndWindow(
      (tmp: Int, value: Int) => tmp + value, //
      Seconds(WINDOW_INTERVAL), //
      Seconds(SLIDER_INTERVAL) //
    )
    // 5. 将结果数据输出 -> 将每批次的数据处理以后输出
    resultDStream.print()
    // 6.启动流式应用,一直运行,直到程序手动关闭或异常终止
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(stopSparkContext = true, stopGracefully = true)
  }
}


目录
相关文章
|
6天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
74 15
|
3天前
|
监控 安全 Linux
启用Linux防火墙日志记录和分析功能
为iptables启用日志记录对于监控进出流量至关重要
|
12天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
11天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
24天前
|
监控 应用服务中间件 定位技术
要统计Nginx的客户端IP,可以通过分析Nginx的访问日志文件来实现
要统计Nginx的客户端IP,可以通过分析Nginx的访问日志文件来实现
|
1月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
71 4
|
1月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
36 4
|
1月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
209 5
|
1月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
359 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
15天前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。