基于帧差法和形态学处理的行驶车辆跟踪算法matlab仿真

简介: 基于帧差法和形态学处理的行驶车辆跟踪算法matlab仿真

1.算法理论概述
车辆跟踪是计算机视觉领域中的一个重要问题,它在交通监控、智能交通系统、自动驾驶等领域具有广泛的应用。本文介绍一种基于帧差法和形态学处理的车辆跟踪算法,通过对视频帧进行帧差法处理,检测出运动目标(车辆),然后利用形态学处理对目标进行形态学运算,实现车辆的跟踪和轨迹的提取。该算法具有较高的实时性和准确性,适用于不同场景的车辆跟踪任务。
该算法的主要步骤如下:

第一步:视频帧获取
从视频数据源获取连续的视频帧,作为输入数据。

第二步:帧差法处理
对相邻的两帧图像进行帧差法处理,得到运动目标图像。帧差法是一种简单有效的运动目标检测方法,它基于连续帧之间的像素变化来检测运动目标。具体步骤如下:

a) 将当前帧和上一帧图像进行灰度转换,得到灰度图像I(t)和I(t-1)。
b) 计算两帧图像之间的差异图像diff = |I(t) - I(t-1)|。
c) 对差异图像进行二值化处理,得到二值化图像BW,其中大于阈值的像素点标记为1,表示运动目标,其他像素点标记为0,表示背景。
第三步:形态学处理
利用形态学处理对二值化的运动目标图像进行处理,进一步优化目标的检测结果。形态学处理是基于图像形状的一组操作,包括腐蚀、膨胀、开运算和闭运算等操作。具体步骤如下:

a) 对二值化图像进行膨胀操作,以填充运动目标的空洞和连接断裂的目标,得到膨胀后的图像Dilate。
b) 对膨胀后的图像进行腐蚀操作,去除小的噪声点,得到腐蚀后的图像Erode。
c) 对腐蚀后的图像进行闭运算,以填充运动目标的小孔,得到闭运算后的图像Close。
d) 对闭运算后的图像进行连通区域分析,提取出目标的轮廓和中心点。
第四步:车辆跟踪与轨迹提取
根据形态学处理得到的目标轮廓和中心点,进行目标的匹配和跟踪。根据目标的运动信息,可以实现车辆的跟踪和轨迹的提取。
帧差法处理
差异图像diff的计算公式为:diff = |I(t) - I(t-1)|

二值化处理
二值化图像BW的计算公式为:
BW(i,j) = 1, if diff(i,j) > 阈值
BW(i,j) = 0, if diff(i,j) ≤ 阈值

膨胀操作
膨胀后的图像Dilate的计算公式为:
Dilate(i,j) = max(BW(i-k:i+k, j-k:j+k)), 其中k为结构元素的大小

腐蚀操作
腐蚀后的图像Erode的计算公式为:
Erode(i,j) = min(BW(i-k:i+k, j-k:j+k)), 其中k为结构元素的大小

闭运算
闭运算后的图像Close的计算公式为:
Close = Erode ⊕ Dilate,其中⊕表示形态学闭运算操作

目标跟踪
目标的跟踪可以通过目标匹配算法实现,例如最邻近匹配算法或卡尔曼滤波算法。跟踪结果可以用目标的中心点坐标表示。

2.算法运行软件版本
MATLAB2013b

3.算法运行效果图预览

1.png
2.png
3.png
4.png
5.png

4.部分核心程序

%Step2:背景的提取
%level越大,背景提取的越精确,通过序列平均法来求背景,所以对于背景的获取,
%我们采用的是前面车辆较少的视频
%在实际中,我们一般统计低峰期的平均值,所以这里我们使用01.AVI
[Obj2,frameNum_Original2] = get_AVI('avi\01.AVI');
[back_ground,back1] = get_background(Obj2,frameNum_Original2);


% Step3:视屏预处理
% Step3:视屏预处理
frameNum       = frameNum_Original;
pixel          = vedio_op(Obj,frameNum);

% Step4:汽车捕获
% Step4:汽车捕获
 [bw,L2,L3,bws,L,pixel2] = get_car(pixel,frameNum,back_ground);

%显示捕获后的汽车结果。
implay(pixel2);



% %车数目的计算,为了防止图像处理过程中的误差,一般我们选取图层中的合适位置进行统计车辆
% %一般选取离摄像头近的区域
% %检测车的数量
% %检测车的密度。测试总数量/测试总时间
% %计算每秒中通过车子数目。即车流密度。
% [num_car,num_p] = car_number(pixel,frameNum,L2);


%检测车的数量
rows         = size(L3,1); %240
cols         = size(L3,2); %320
Length       = size(L3,3);

area=0;
TotalPic=0;

for i =1:Length
TotalPic=car_information(bws(:,:,i),cols,rows,0.5);
      if isempty(TotalPic)==0
      area(1:length(TotalPic(4,:)),i)=TotalPic(4,:);
      end
end
num(1:size(area,2))=0;
for i = 1:size(area,2)
    for j = 1:size(area,1)
        if area(j,i)>100
        num(i) = num(i) + 1;
        else
        num(i) = num(i);
        end 
    end
end

areas =sort(area(:,i));
[Carnum,v]=max(num)
相关文章
|
1天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
1天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
7天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
7天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
215 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度