大数据Spark电影评分数据分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 大数据Spark电影评分数据分析

1 数据 ETL

使用电影评分数据进行数据分析,分别使用DSL编程和SQL编程,熟悉数据处理函数及SQL使用,业务需求说明:对电影评分数据进行统分析,获取Top10电影(电影评分平均值最高,并且每个电影被评分的次数大于2000)。数据集ratings.dat总共100万条数据,数据格式如下每行数据各个字段之间使用双冒号分开:

数据集地址:https://grouplens.org/datasets/movielens/

数据处理分析步骤如下:

1. 第一步、读取电影评分数据,从本地文件系统读取
2. 第二步、转换数据,指定Schema信息,封装到DataFrame
3. 第三步、基于SQL方式分析
4. 第四步、基于DSL方式分析

读取电影评分数据,将其转换为DataFrame,使用指定列名方式定义Schema信息,代码如下:

// 构建SparkSession实例对象
val spark: SparkSession = SparkSession.builder()
  .master("local[4]")
  .appName(this.getClass.getSimpleName.stripSuffix("$"))
  .getOrCreate()
// 导入隐式转换
import spark.implicits._
// 1. 读取电影评分数据,从本地文件系统读取
val rawRatingsDS: Dataset[String] = spark.read.textFile("datas/ml-1m/ratings.dat")
// 2. 转换数据
val ratingsDF: DataFrame = rawRatingsDS
  // 过滤数据.
  .filter(line => null != line && line.trim.split("::").length == 4)
  // 提取转换数据
  .mapPartitions { iter =>
    iter.map { line =>
      // 按照分割符分割,拆箱到变量中
      val Array(userId, movieId, rating, timestamp) = line.trim.split("::")
      // 返回四元组
      (userId, movieId, rating.toDouble, timestamp.toLong)
    }
  }
  // 指定列名添加Schema
  .toDF("userId", "movieId", "rating", "timestamp")
/*
root
|-- userId: string (nullable = true)
|-- movieId: string (nullable = true)
|-- rating: double (nullable = false)
|-- timestamp: long (nullable = false)
*/
//ratingsDF.printSchema()
/*
+------+-------+------+---------+
|userId|movieId|rating|timestamp|
+------+-------+------+---------+
| 1| 1193| 5.0|978300760|
| 1| 661| 3.0|978302109|
| 1| 594| 4.0|978302268|
| 1| 919| 4.0|978301368|
+------+-------+------+---------+
*/
//ratingsDF.show(4)

2 使用 SQL 分析

首先将DataFrame注册为临时视图,再编写SQL语句,最后使用SparkSession执行,代码如下:

// TODO: 基于SQL方式分析
// 第一步、注册DataFrame为临时视图
ratingsDF.createOrReplaceTempView("view_temp_ratings")
// 第二步、编写SQL
val top10MovieDF: DataFrame = spark.sql(
  """
    |SELECT
    | movieId, ROUND(AVG(rating), 2) AS avg_rating, COUNT(movieId) AS cnt_rating
    |FROM
    | view_temp_ratings
    |GROUP BY
    | movieId
    |HAVING
    | cnt_rating > 2000
    |ORDER BY
    | avg_rating DESC, cnt_rating DESC
    |LIMIT
    | 10
""".stripMargin)
//top10MovieDF.printSchema()
top10MovieDF.show(10, truncate = false)

应用scala的stripMargin方法,在scala中stripMargin默认是“|”作为出来连接符,在多行换行的行头前面加一个“|”符号即可。


代码实例:


val speech = “”"abc


|def"“”.stripMargin


运行的结果为:


abc


ldef

运行程序结果如下:

3 使用 DSL 分析

调用Dataset中函数,采用链式编程分析数据,核心代码如下:

// TODO: 基于DSL=Domain Special Language(特定领域语言) 分析
import org.apache.spark.sql.functions._
val resultDF: DataFrame = ratingsDF
  // 选取字段
  .select($"movieId", $"rating")
  // 分组:按照电影ID,获取平均评分和评分次数
  .groupBy($"movieId")
  .agg( //
    round(avg($"rating"), 2).as("avg_rating"), //
    count($"movieId").as("cnt_rating") //
  )
  // 过滤:评分次数大于2000
  .filter($"cnt_rating" > 2000)
  // 排序:先按照评分降序,再按照次数降序
  .orderBy($"avg_rating".desc, $"cnt_rating".desc)
  // 获取前10
  .limit(10)
//resultDF.printSchema()
resultDF.show(10)

Round函数返回一个数值,该数值是按照指定的小数位数进行四舍五入运算的结果。除数值外,也可对日期进行舍入运算。

round(3.19, 1) 将 3.19 四舍五入到一个小数位 (3.2)

round(2.649, 1) 将 2.649 四舍五入到一个小数位 (2.6)

round(-5.574, 2) 将 -5.574 四舍五入到两小数位 (-5.57)其中使用SparkSQL中自带函数库functions,在org.apache.spark.sql.functions中,包含常用函

数,有些与Hive中函数库类似,但是名称不一样。

使用需要导入函数库:import org.apache.spark.sql.functions._

4 保存结果数据

将分析结果数据保存到外部存储系统中,比如保存到MySQL数据库表中或者CSV文件中。

// TODO: 将分析的结果数据保存MySQL数据库和CSV文件
// 结果DataFrame被使用多次,缓存
resultDF.persist(StorageLevel.MEMORY_AND_DISK)
// 1. 保存MySQL数据库表汇总
resultDF
  .coalesce(1) // 考虑降低分区数目
  .write
  .mode("overwrite")
  .option("driver", "com.mysql.cj.jdbc.Driver")
  .option("user", "root")
  .option("password", "123456")
  .jdbc(
    "jdbc:mysql://node1.oldlu.cn:3306/?serverTimezone=UTC&characterEncoding=utf8&useUnic
      ode = true",
      "db_test.tb_top10_movies",
      new Properties ()
      )
      // 2. 保存CSV文件:每行数据中个字段之间使用逗号隔开
      resultDF
      .coalesce (1)
      .write.mode ("overwrite")
      .csv ("datas/top10-movies")
      // 释放缓存数据
      resultDF.unpersist ()

查看数据库中结果表的数据:

5 案例完整代码

电影评分数据分析,经过数据ETL、数据分析(SQL分析和DSL分析)及最终保存结果,整套

数据处理分析流程,其中涉及到很多数据细节,完整代码如下

import java.util.Properties
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
import org.apache.spark.storage.StorageLevel
/**
 * 需求:对电影评分数据进行统计分析,获取Top10电影(电影评分平均值最高,并且每个电影被评分的次数大于2000)
 */
object SparkTop10Movie {
  def main(args: Array[String]): Unit = {
    // 构建SparkSession实例对象
    val spark: SparkSession = SparkSession.builder()
      .master("local[4]")
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      // TODO: 设置shuffle时分区数目
      .config("spark.sql.shuffle.partitions", "4")
      .getOrCreate()
    // 导入隐式转换
    import spark.implicits._
    // 1. 读取电影评分数据,从本地文件系统读取
    val rawRatingsDS: Dataset[String] = spark.read.textFile("datas/ml-1m/ratings.dat")
    // 2. 转换数据
    val ratingsDF: DataFrame = rawRatingsDS
      // 过滤数据
      .filter(line => null != line && line.trim.split("::").length == 4)
      // 提取转换数据
      .mapPartitions { iter =>
        iter.map { line =>
          // 按照分割符分割,拆箱到变量中
          val Array(userId, movieId, rating, timestamp) = line.trim.split("::")
          // 返回四元组
          (userId, movieId, rating.toDouble, timestamp.toLong)
        }
      }
      // 指定列名添加Schema
      .toDF("userId", "movieId", "rating", "timestamp")
    /*
    root
    |-- userId: string (nullable = true)
    |-- movieId: string (nullable = true)
    |-- rating: double (nullable = false)
    |-- timestamp: long (nullable = false)
    */
    //ratingsDF.printSchema()
    /*
    +------+-------+------+---------+
    |userId|movieId|rating|timestamp|
    +------+-------+------+---------+
    | 1| 1193| 5.0|978300760|
    | 1| 661| 3.0|978302109|
    | 1| 594| 4.0|978302268|
    | 1| 919| 4.0|978301368|
    +------+-------+------+---------+
    */
    //ratingsDF.show(4)
    // TODO: 基于SQL方式分析
    // 第一步、注册DataFrame为临时视图
    ratingsDF.createOrReplaceTempView("view_temp_ratings")
    // 第二步、编写SQL
    val top10MovieDF: DataFrame = spark.sql(
      """
        |SELECT
        | movieId, ROUND(AVG(rating), 2) AS avg_rating, COUNT(movieId) AS cnt_rating
        |FROM
        | view_temp_ratings
        |GROUP BY
        | movieId
        |HAVING
        | cnt_rating > 2000
        |ORDER BY
        | avg_rating DESC, cnt_rating DESC
        |LIMIT
        | 10
""".stripMargin)
    //top10MovieDF.printSchema()
    top10MovieDF.show(10, truncate = false)
    println("===============================================================")
    // TODO: 基于DSL=Domain Special Language(特定领域语言) 分析
    import org.apache.spark.sql.functions._
    val resultDF: DataFrame = ratingsDF
      // 选取字段
      .select($"movieId", $"rating")
      // 分组:按照电影ID,获取平均评分和评分次数
      .groupBy($"movieId")
      .agg( //
        round(avg($"rating"), 2).as("avg_rating"), //
        count($"movieId").as("cnt_rating") //
      )
      // 过滤:评分次数大于2000
      .filter($"cnt_rating" > 2000)
      // 排序:先按照评分降序,再按照次数降序
      .orderBy($"avg_rating".desc, $"cnt_rating".desc)
      // 获取前10
      .limit(10)
    //resultDF.printSchema()
    resultDF.show(10)
    // TODO: 将分析的结果数据保存MySQL数据库和CSV文件
    // 结果DataFrame被使用多次,缓存
    resultDF.persist(StorageLevel.MEMORY_AND_DISK)
    // 1. 保存MySQL数据库表汇总
    resultDF
      .coalesce(1) // 考虑降低分区数目
      .write
      .mode("overwrite")
      .option("driver", "com.mysql.cj.jdbc.Driver")
      .option("user", "root")
      .option("password", "123456")
      .jdbc(
        "jdbc:mysql://node1.oldlu.cn:3306/?serverTimezone=UTC&characterEncoding=utf8&useUnic
          ode = true",
          "db_test.tb_top10_movies",
          new Properties ()
          )
          // 2. 保存CSV文件:每行数据中个字段之间使用逗号隔开
          resultDF
          .coalesce (1)
          .write.mode ("overwrite")
          .csv ("datas/top10-movies")
          // 释放缓存数据
          resultDF.unpersist ()
          // 应用结束,关闭资源
          Thread.sleep (10000000)
          spark.stop ()
          }
          }

6 Shuffle 分区数目问题

运行上述程序时,查看WEB UI监控页面发现,某个Stage中有200个Task任务,也就是说RDD有200分区Partition。

原因:在SparkSQL中当Job中产生Shuffle时,默认的分区数(spark.sql.shuffle.partitions )为

200,在实际项目中要合理的设置。在构建SparkSession实例对象时,设置参数的值:

// 构建SparkSession实例对象
val spark: SparkSession = SparkSession.builder()
.master("local[4]")
.appName(this.getClass.getSimpleName.stripSuffix("$"))
// TODO: 设置shuffle时分区数目
.config("spark.sql.shuffle.partitions", "4")
.getOrCreate()
// 导入隐式转换
import spark.implicits._


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
存储 数据可视化 数据挖掘
基于大数据的电影可视化、推荐与票房预测系统
本系统基于Python与Flask框架,结合Echarts等技术,实现电影数据的采集、存储与可视化展示。通过对票房、评分、评论等数据的分析,生成图表与词云,帮助用户直观理解电影市场趋势,支持决策制定与观影推荐,提升电影行业的数据分析能力与用户体验。
|
5月前
|
数据采集 人工智能 算法
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
197 1
|
1月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
5月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
306 0
|
1月前
|
机器学习/深度学习 搜索推荐 数据挖掘
数据分析真能让音乐产业更好听吗?——聊聊大数据在音乐里的那些事
数据分析真能让音乐产业更好听吗?——聊聊大数据在音乐里的那些事
145 9
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
3月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
3月前
|
机器学习/深度学习 搜索推荐 算法
基于大数据的电影点评与推荐
本系统基于大数据与人工智能技术,构建电影点评与推荐平台,提供个性化电影推荐、用户点评及社交互动功能。通过分析用户行为与电影属性,优化推荐算法,提升用户体验与满意度,促进电影产业发展与市场活跃。
基于大数据的电影点评与推荐

热门文章

最新文章