大数据Spark RDD持久化和Checkpoint

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据Spark RDD持久化和Checkpoint

1 缓存函数

在实际开发中某些RDD的计算或转换可能会比较耗费时间,如果这些RDD后续还会频繁的被使用到,那么可以将这些RDD进行持久化/缓存,这样下次再使用到的时候就不用再重新计算了,提高了程序运行的效率。

可以将RDD数据直接缓存到内存中,函数声明如下:

但是实际项目中,不会直接使用上述的缓存函数,RDD数据量往往很多,内存放不下的。在实

际的项目中缓存RDD数据时,往往使用如下函数,依据具体的业务和数据量,指定缓存的级别:

2 缓存级别

Spark框架中对数据缓存可以指定不同的级别,对于开发来说至关重要,如下所示:

实际项目中缓存数据时,往往选择如下两种级别:

缓存函数与Transformation函数一样,都是Lazy操作,需要Action函数触发,通常使用count

函数触发。

3 释放缓存

当缓存的RDD数据,不再被使用时,考虑释资源,使用如下函数:

4 何时缓存数据

在实际项目开发中,什么时候缓存RDD数据,最好呢???

  • 第一点:当某个RDD被使用多次的时候,建议缓存此RDD数据
  1. 比如,从HDFS上读取网站行为日志数据,进行多维度的分析,最好缓存数据
  • 第二点:当某个RDD来之不易,并且使用不止一次,建议缓存此RDD数据
  1. 比如,从HBase表中读取历史订单数据,与从MySQL表中商品和用户维度信息数据,进行
    关联Join等聚合操作,获取RDD:etlRDD,后续的报表分析使用此RDD,此时建议缓存RDD
    数据
  2. 案例:etlRDD.persist(StoageLeval.MEMORY_AND_DISK_2)
    演示范例代码:
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}
/**
 * RDD中缓存函数,将数据缓存到内存或磁盘、释放缓存
 */
object SparkCacheTest {
  def main(args: Array[String]): Unit = {
    // 创建应用程序入口SparkContext实例对象
    val sc: SparkContext = {
      // 1.a 创建SparkConf对象,设置应用的配置信息
      val sparkConf: SparkConf = new SparkConf()
        .setAppName(this.getClass.getSimpleName.stripSuffix("$"))
        .setMaster("local[2]")
      // 1.b 传递SparkConf对象,构建Context实例
      new SparkContext(sparkConf)
    }
    // 读取文本文件数据
    val inputRDD: RDD[String] = sc.textFile("datas/wordcount/wordcount.data", minPartitions = 2)
    // 缓存数据: 将数据缓存至内存
    inputRDD.cache()
    inputRDD.persist()
    // 使用Action函数触发缓存
    println(s"Count = ${inputRDD.count()}")
    // 释放缓存
    inputRDD.unpersist()
    // 缓存数据:选择缓存级别
    /*
    val NONE = new StorageLevel(false, false, false, false)
    val DISK_ONLY = new StorageLevel(true, false, false, false)
    val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
    val MEMORY_ONLY = new StorageLevel(false, true, false, true)
    val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
    val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
    val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
    val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
    val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
    val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
    val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
    val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
    */
    inputRDD.persist(StorageLevel.MEMORY_AND_DISK)
    println(s"count: ${inputRDD.count()}")
    // 应用程序运行结束,关闭资源
    sc.stop()
  }
}

5 RDD Checkpoint

RDD 数据可以持久化,但是持久化/缓存可以把数据放在内存中,虽然是快速的,但是也是最不可靠的;也可以把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏等。

Checkpoint的产生就是为了更加可靠的数据持久化,在Checkpoint的时候一般把数据放在在HDFS上,这就天然的借助了HDFS天生的高容错、高可靠来实现数据最大程度上的安全,实现了RDD的容错和高可用。

在Spark Core中对RDD做checkpoint,可以切断做checkpoint RDD的依赖关系,将RDD数据

保存到可靠存储(如HDFS)以便数据恢复;

0f91d4b684f342e399b8fd70ea630489.png

演示范例代码如下:

import org.apache.spark.{SparkConf, SparkContext}
/**
 * RDD数据Checkpoint设置,案例演示
 */
object SparkCkptTest {
  def main(args: Array[String]): Unit = {
    // 创建应用程序入口SparkContext实例对象
    val sc: SparkContext = {
      // 1.a 创建SparkConf对象,设置应用的配置信息
      val sparkConf: SparkConf = new SparkConf()
        .setAppName(this.getClass.getSimpleName.stripSuffix("$"))
        .setMaster("local[2]")
      // 1.b 传递SparkConf对象,构建Context实例
      new SparkContext(sparkConf)
    }
    sc.setLogLevel("WARN")
    // TODO: 设置检查点目录,将RDD数据保存到那个目录
    sc.setCheckpointDir("datas/spark/ckpt/")
    // 读取文件数据
    val datasRDD = sc.textFile("datas/wordcount/wordcount.data")
    // TODO: 调用checkpoint函数,将RDD进行备份,需要RDD中Action函数触发
    datasRDD.checkpoint()
    datasRDD.count()
    // TODO: 再次执行count函数, 此时从checkpoint读取数据
    datasRDD.count()
    // 应用程序运行结束,关闭资源
    Thread.sleep(100000)
    sc.stop()
  }
}

持久化和Checkpoint的区别:


1)、存储位置

Persist 和 Cache 只能保存在本地的磁盘和内存中(或者堆外内存);

Checkpoint 可以保存数据到 HDFS 这类可靠的存储上;

2)、生命周期

Cache和Persist的RDD会在程序结束后会被清除或者手动调用unpersist方法;

Checkpoint的RDD在程序结束后依然存在,不会被删除;

3)、Lineage(血统、依赖链、依赖关系)

Persist和Cache,不会丢掉RDD间的依赖链/依赖关系,因为这种缓存是不可靠的,如果出

现了一些错误(例如 Executor 宕机),需要通过回溯依赖链重新计算出来;

Checkpoint会斩断依赖链,因为Checkpoint会把结果保存在HDFS这类存储中,更加的安全可靠,一般不需要回溯依赖链;

24472a3c01c3443f844e1f4457c4014f.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
10天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
38 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
9天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
44 2
|
10天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
42 1
|
10天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
11天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
42 1
|
1天前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
10天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
45 1
|
4天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
13 3
|
4天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
20 2
下一篇
无影云桌面