SMA-ELM分类预测 | Matlab 黏菌算法优化极限学习机(SMA-ELM)分类预测

简介: SMA-ELM分类预测 | Matlab 黏菌算法优化极限学习机(SMA-ELM)分类预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习领域,数据分类是一项重要的任务,它涉及将数据集划分为不同的类别。为了实现准确的分类,研究人员一直在探索各种算法和技术。极限学习机(Extreme Learning Machine,简称ELM)是一种被广泛应用于数据分类的机器学习算法。然而,传统的ELM算法在处理复杂数据集时可能存在一些问题,因此研究人员提出了一种基于黏菌算法的优化方法,称为SMA-ElM。

黏菌算法是一种模拟黏菌聚集行为的优化算法。它通过模拟黏菌在环境中的移动和聚集来解决优化问题。SMA-ElM算法结合了黏菌算法和ELM算法的优势,以提高数据分类的准确性和效率。

SMA-ElM算法的核心思想是通过优化隐藏层的权重和偏置来提高ELM算法的性能。在传统的ELM算法中,隐藏层的权重和偏置是随机初始化的,这可能导致分类性能不稳定。SMA-ElM算法使用黏菌算法来优化隐藏层的权重和偏置,以使其更好地适应数据集的特征。通过优化隐藏层,SMA-ElM算法能够更好地捕捉数据集的非线性特征,从而提高分类准确性。

SMA-ElM算法的步骤如下:

    1. 初始化隐藏层的权重和偏置。使用黏菌算法生成初始的黏菌浓度和位置。
    2. 计算隐藏层的输出。将输入数据与隐藏层的权重和偏置相乘,并通过激活函数得到隐藏层的输出。
    3. 计算输出层的权重。使用Moore-Penrose伪逆方法计算输出层的权重。
    4. 计算输出结果。将隐藏层的输出与输出层的权重相乘,得到最终的输出结果。
    5. 评估分类性能。使用评估指标(如准确率、召回率和F1值)评估SMA-ElM算法的分类性能。

    通过以上步骤,SMA-ElM算法能够优化极限学习机的分类性能,并提高数据分类的准确性。实验结果表明,SMA-ElM算法在处理复杂数据集时具有较好的性能和鲁棒性。

    总结起来,SMA-ElM算法是一种基于黏菌算法优化的极限学习机算法,用于实现数据分类。通过优化隐藏层的权重和偏置,SMA-ElM算法能够更好地捕捉数据集的非线性特征,从而提高分类准确性。未来,我们可以进一步研究和改进SMA-ElM算法,以应用于更多的数据分类问题。

    📣 部分代码

    function [IW,B,LW,TF,TYPE] = elmtrainNew(P,T,N,TF,TYPE,IW,B)% ELMTRAIN Create and Train a Extreme Learning Machine% Syntax% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)% Description% Input% P   - Input Matrix of Training Set  (R*Q)% T   - Output Matrix of Training Set (S*Q)% N   - Number of Hidden Neurons (default = Q)% IW - 输入初始权值% B -  输入初始阈值% TF  - Transfer Function:%       'sig' for Sigmoidal function (default)%       'sin' for Sine function%       'hardlim' for Hardlim function% TYPE - Regression (0,default) or Classification (1)% Output% IW  - Input Weight Matrix (N*R)% B   - Bias Matrix  (N*1)% LW  - Layer Weight Matrix (N*S)% Example% Regression:% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)% Y = elmtrain(P,IW,B,LW,TF,TYPE)% Classification% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)% Y = elmtrain(P,IW,B,LW,TF,TYPE)% See also ELMPREDICT% Yu Lei,11-7-2010% Copyright www.matlabsky.com% $Revision:1.0 $if nargin < 2    error('ELM:Arguments','Not enough input arguments.');endif nargin < 3    N = size(P,2);endif nargin < 4    TF = 'sig';endif nargin < 5    TYPE = 0;endif size(P,2) ~= size(T,2)    error('ELM:Arguments','The columns of P and T must be same.');end[R,Q] = size(P);if TYPE  == 1    T  = ind2vec(T);end[S,Q] = size(T);% Randomly Generate the Input Weight Matrix% IW = rand(N,R) * 2 - 1;% Randomly Generate the Bias Matrix% B = rand(N,1);BiasMatrix = repmat(B,1,Q);% Calculate the Layer Output Matrix HtempH = IW * P + BiasMatrix;switch TF    case 'sig'        H = 1 ./ (1 + exp(-tempH));    case 'sin'        H = sin(tempH);    case 'hardlim'        H = hardlim(tempH);end% Calculate the Output Weight MatrixLW = pinv(H') * T';

    ⛳️ 运行结果

    image.gif编辑

    image.gif编辑

    image.gif编辑

    🔗 参考文献

    [1] 周孟然,凌胜,来文豪,等.基于黏菌优化极限学习机的煤矸石多光谱识别[J].[2023-09-15].

    [2]  Salama R H M , Faied S M A , Elkholy M ,et al.Gene expression of programmed cell death ligand-1 (PDL-1) and vitamin D receptor (VDR) with the serum vitamin D3 in lung cancer[J].Egyptian Journal of Bronchology, 2022, 16(1):1-8.DOI:10.1186/s43168-022-00168-0.

    🎈 部分理论引用网络文献,若有侵权联系博主删除
    🎁  关注我领取海量matlab电子书和数学建模资料

    👇  私信完整代码和数据获取及论文数模仿真定制

    1 各类智能优化算法改进及应用

    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

    2 机器学习和深度学习方面

    卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

    2.图像处理方面

    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

    3 路径规划方面

    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

    4 无人机应用方面

    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

    5 无线传感器定位及布局方面

    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

    6 信号处理方面

    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

    7 电力系统方面

    微电网优化、无功优化、配电网重构、储能配置

    8 元胞自动机方面

    交通流 人群疏散 病毒扩散 晶体生长

    9 雷达方面

    卡尔曼滤波跟踪、航迹关联、航迹融合
    相关文章
    |
    1天前
    |
    算法 数据安全/隐私保护
    室内障碍物射线追踪算法matlab模拟仿真
    ### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
    |
    2天前
    |
    机器学习/深度学习 数据采集 算法
    基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
    本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
    基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
    |
    2天前
    |
    算法
    基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
    本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
    |
    5天前
    |
    传感器 算法
    基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
    本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
    |
    5天前
    |
    算法
    基于RRT优化算法的机械臂路径规划和避障matlab仿真
    本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
    |
    14天前
    |
    机器学习/深度学习 算法
    基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
    本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
    149 80
    |
    8天前
    |
    机器学习/深度学习 算法
    基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
    本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
    |
    10天前
    |
    机器学习/深度学习 数据采集 算法
    基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
    本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
    |
    7天前
    |
    算法
    基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
    本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
    |
    11天前
    |
    机器学习/深度学习 算法 索引
    单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
    本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

    热门文章

    最新文章