SMA-ELM分类预测 | Matlab 黏菌算法优化极限学习机(SMA-ELM)分类预测

简介: SMA-ELM分类预测 | Matlab 黏菌算法优化极限学习机(SMA-ELM)分类预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习领域,数据分类是一项重要的任务,它涉及将数据集划分为不同的类别。为了实现准确的分类,研究人员一直在探索各种算法和技术。极限学习机(Extreme Learning Machine,简称ELM)是一种被广泛应用于数据分类的机器学习算法。然而,传统的ELM算法在处理复杂数据集时可能存在一些问题,因此研究人员提出了一种基于黏菌算法的优化方法,称为SMA-ElM。

黏菌算法是一种模拟黏菌聚集行为的优化算法。它通过模拟黏菌在环境中的移动和聚集来解决优化问题。SMA-ElM算法结合了黏菌算法和ELM算法的优势,以提高数据分类的准确性和效率。

SMA-ElM算法的核心思想是通过优化隐藏层的权重和偏置来提高ELM算法的性能。在传统的ELM算法中,隐藏层的权重和偏置是随机初始化的,这可能导致分类性能不稳定。SMA-ElM算法使用黏菌算法来优化隐藏层的权重和偏置,以使其更好地适应数据集的特征。通过优化隐藏层,SMA-ElM算法能够更好地捕捉数据集的非线性特征,从而提高分类准确性。

SMA-ElM算法的步骤如下:

    1. 初始化隐藏层的权重和偏置。使用黏菌算法生成初始的黏菌浓度和位置。
    2. 计算隐藏层的输出。将输入数据与隐藏层的权重和偏置相乘,并通过激活函数得到隐藏层的输出。
    3. 计算输出层的权重。使用Moore-Penrose伪逆方法计算输出层的权重。
    4. 计算输出结果。将隐藏层的输出与输出层的权重相乘,得到最终的输出结果。
    5. 评估分类性能。使用评估指标(如准确率、召回率和F1值)评估SMA-ElM算法的分类性能。

    通过以上步骤,SMA-ElM算法能够优化极限学习机的分类性能,并提高数据分类的准确性。实验结果表明,SMA-ElM算法在处理复杂数据集时具有较好的性能和鲁棒性。

    总结起来,SMA-ElM算法是一种基于黏菌算法优化的极限学习机算法,用于实现数据分类。通过优化隐藏层的权重和偏置,SMA-ElM算法能够更好地捕捉数据集的非线性特征,从而提高分类准确性。未来,我们可以进一步研究和改进SMA-ElM算法,以应用于更多的数据分类问题。

    📣 部分代码

    function [IW,B,LW,TF,TYPE] = elmtrainNew(P,T,N,TF,TYPE,IW,B)% ELMTRAIN Create and Train a Extreme Learning Machine% Syntax% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)% Description% Input% P   - Input Matrix of Training Set  (R*Q)% T   - Output Matrix of Training Set (S*Q)% N   - Number of Hidden Neurons (default = Q)% IW - 输入初始权值% B -  输入初始阈值% TF  - Transfer Function:%       'sig' for Sigmoidal function (default)%       'sin' for Sine function%       'hardlim' for Hardlim function% TYPE - Regression (0,default) or Classification (1)% Output% IW  - Input Weight Matrix (N*R)% B   - Bias Matrix  (N*1)% LW  - Layer Weight Matrix (N*S)% Example% Regression:% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)% Y = elmtrain(P,IW,B,LW,TF,TYPE)% Classification% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)% Y = elmtrain(P,IW,B,LW,TF,TYPE)% See also ELMPREDICT% Yu Lei,11-7-2010% Copyright www.matlabsky.com% $Revision:1.0 $if nargin < 2    error('ELM:Arguments','Not enough input arguments.');endif nargin < 3    N = size(P,2);endif nargin < 4    TF = 'sig';endif nargin < 5    TYPE = 0;endif size(P,2) ~= size(T,2)    error('ELM:Arguments','The columns of P and T must be same.');end[R,Q] = size(P);if TYPE  == 1    T  = ind2vec(T);end[S,Q] = size(T);% Randomly Generate the Input Weight Matrix% IW = rand(N,R) * 2 - 1;% Randomly Generate the Bias Matrix% B = rand(N,1);BiasMatrix = repmat(B,1,Q);% Calculate the Layer Output Matrix HtempH = IW * P + BiasMatrix;switch TF    case 'sig'        H = 1 ./ (1 + exp(-tempH));    case 'sin'        H = sin(tempH);    case 'hardlim'        H = hardlim(tempH);end% Calculate the Output Weight MatrixLW = pinv(H') * T';

    ⛳️ 运行结果

    image.gif编辑

    image.gif编辑

    image.gif编辑

    🔗 参考文献

    [1] 周孟然,凌胜,来文豪,等.基于黏菌优化极限学习机的煤矸石多光谱识别[J].[2023-09-15].

    [2]  Salama R H M , Faied S M A , Elkholy M ,et al.Gene expression of programmed cell death ligand-1 (PDL-1) and vitamin D receptor (VDR) with the serum vitamin D3 in lung cancer[J].Egyptian Journal of Bronchology, 2022, 16(1):1-8.DOI:10.1186/s43168-022-00168-0.

    🎈 部分理论引用网络文献,若有侵权联系博主删除
    🎁  关注我领取海量matlab电子书和数学建模资料

    👇  私信完整代码和数据获取及论文数模仿真定制

    1 各类智能优化算法改进及应用

    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

    2 机器学习和深度学习方面

    卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

    2.图像处理方面

    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

    3 路径规划方面

    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

    4 无人机应用方面

    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

    5 无线传感器定位及布局方面

    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

    6 信号处理方面

    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

    7 电力系统方面

    微电网优化、无功优化、配电网重构、储能配置

    8 元胞自动机方面

    交通流 人群疏散 病毒扩散 晶体生长

    9 雷达方面

    卡尔曼滤波跟踪、航迹关联、航迹融合
    相关文章
    |
    1天前
    |
    算法
    基于大爆炸优化算法的PID控制器参数寻优matlab仿真
    本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
    |
    13天前
    |
    算法 数据安全/隐私保护 索引
    OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
    本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
    |
    20小时前
    |
    算法
    基于GA遗传算法的PID控制器参数优化matlab建模与仿真
    本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
    |
    8天前
    |
    存储 关系型数据库 分布式数据库
    PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
    PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
    20 5
    |
    21天前
    |
    算法 数据挖掘 数据安全/隐私保护
    基于FCM模糊聚类算法的图像分割matlab仿真
    本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
    |
    22天前
    |
    算法 调度
    基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
    车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
    |
    22天前
    |
    机器学习/深度学习 算法 芯片
    基于GSP工具箱的NILM算法matlab仿真
    基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
    |
    2月前
    |
    算法 安全 数据安全/隐私保护
    基于game-based算法的动态频谱访问matlab仿真
    本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
    |
    23天前
    |
    存储 算法 决策智能
    基于免疫算法的TSP问题求解matlab仿真
    旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
    |
    22天前
    |
    机器学习/深度学习 算法 5G
    基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
    基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
    42 3