数据结构和算法的学习笔记(第十一部分)

简介: 自学的笔记

十二、多路查找树

12.1、二叉树与 B 树

12.1.1、二叉树的问题分析

二叉树的操作效率较高,但是也存在问题, 请看下面的二叉树

image-20221210113030592

1) 二叉树需要加载到内存的,如果二叉树的节点少,没有什么问题,但是如果二叉树的节点很多(比如1 亿),就存在如下问题:

2) 问题 1:在构建二叉树时,需要多次进行 i/o 操作(海量数据存在数据库或文件中),节点海量,构建二叉树时,速度有影响

3) 问题 2:节点海量,也会造成二叉树的高度很大,会降低操作速度

12.1.2 、多叉树

1) 在二叉树中,每个节点有数据项,最多有两个子节点。如果允许每个节点可以有更多的数据项和更多的子节点,就是多叉树(multiway tree)

2) 后面我们讲解的 2-3 树,2-3-4 树就是多叉树,多叉树通过重新组织节点,减少树的高度,能对二叉树进行优化。

3) 举例说明(下面 2-3 树就是一颗多叉树)

image-20221210113211761

12.1.3 、B 树的基本介绍

B 树通过重新组织节点,降低树的高度,并且减少 i/o 读写次数来提升效率

image-20221210113355083

1) 如图 B 树通过重新组织节点, 降低了树的高度.

2) 文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页(页得大小通常为4k),这样每个节点只需要一次 I/O 就可以完全载入

3) 将树的度 M 设置为 1024,在 600 亿个元素中最多只需要 4 次 I/O 操作就可以读取到想要的元素, B树(B+)广泛应用于文件存储系统以及数据库系统中

12.2 、2-3 树

12.2.1 、2-3 树是最简单的 B 树结构, 具有如下特点:

1) 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)

2) 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.

3) 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点.

4) 2-3 树是由二节点和三节点构成的树

12.2.2、 2-3 树应用案例

将数列{16, 24, 12, 32, 14, 26, 34, 10, 8, 28, 38, 20} 构建成 2-3 树,并保证数据插入的大小顺序。(演示一下构建2-3树的过程.)

image-20221210114654657

插入规则:

1) 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)

2) 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.

3) 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点

4) 当按照规则插入一个数到某个节点时,不能满足上面三个要求,就需要拆,先向上拆,如果上层满,则拆本层,拆后仍然需要满足上面 3 个条件。

5) 对于三节点的子树的值大小仍然遵守(BST 二叉排序树)的规则

12.2.3 、其它说明

除了 23 树,还有 234 树等,概念和 23 树类似,也是一种 B 树。 如图:

image-20221210121520986

12.3 、B 树、B+树和 B*树

12.3.1 、B 树的介绍

B-tree 树即 B 树,B 即 Balanced,平衡的意思。有人把 B-tree 翻译成 B-树,容易让人产生误解。会以为B-树是一种树,而 B 树又是另一种树。实际上,B-tree 就是指的 B 树

12.3.2、 B 树的介绍

前面已经介绍了 2-3 树和 2-3-4 树,他们就是 B 树(英语:B-tree 也写成 B-树),这里我们再做一个说明,我们在学习 Mysql 时,经常听到说某种类型的索引是基于 B 树或者 B+树的,如图:

image-20221210121537724

对上图的说明:

  • 1) B 树的阶:节点的最多子节点个数。比如 2-3 树的阶是 3,2-3-4 树的阶是 4
  • 2) B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点
  • 3) 关键字集合分布在整颗树中, 即叶子节点和非叶子节点都存放数据.
  • 4) 搜索有可能在非叶子结点结束
  • 5) 其搜索性能等价于在关键字全集内做一次二分查找

12.3.3 、B+树的介绍

B+树是 B 树的变体,也是一种多路搜索树

image-20221210121556698

对上图的说明:

1) B+树的搜索与 B 树也基本相同,区别是 B+树只有达到叶子结点才命中(B 树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找

2) 所有关键字都出现在叶子结点的链表中(即数据只能在叶子节点【也叫稠密索引】),且链表中的关键字(数据)恰好是有序的。 3) 不可能在非叶子结点命中

4) 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层

5) 更适合文件索引系统

6) B 树和 B+树各有自己的应用场景,不能说 B+树完全比 B 树好,反之亦然.

12.3.4 、B*树的介绍

B树是 B+树的变体,在 B+树的非根和非叶子结点再增加*指向兄弟的指针

image-20221210102202184

B树的说明:

1) B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为 2/3,而B+树的块的最低使用率为的1/2。

2) 从第 1 个特点我们可以看出,B树分配新结点的概率比 B+树要低,空间使用率更高

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
83 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
33 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
35 4
|
2月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
22 0
数据结构与算法学习十四:常用排序算法总结和对比
|
2月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
36 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
2月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
2月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
25 0
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。