基于Python的微博大数据舆情分析,舆论情感分析可视化系统

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 基于Python的微博大数据舆情分析,舆论情感分析可视化系统

运行效果图


基于Python的微博大数据舆情分析,舆论情感分析可视化系统


系统介绍


微博舆情分析系统,项目后端分爬虫模块、数据分析模块、数据存储模块、业务逻辑模块组成。


先后进行了数据获取和筛选存储,对存储后的数据库数据进行提取分析处理等操作,得到符合需要的结构化数据,将处理后的数据根据需要进行分析,得到相关的可视化数据,然后提供对应的接口给前端页面,显示在项目的前端页面中。


使用flask进行整个项目框架的构建,爬虫部分模块使用requests官方依赖库进行数据获取,根据微博公开的api接口获取结构化json数据,然后使用pandas对数据进行筛选,处理和分析。


部分效果图


c5db6c44aea4bb3c805512e61927891d_767ca8a01a34b28a512dfe45f329b07b.png

25d19801416a0b930920d97f35cff288_b3102666b87e5567e3f00c8ad0413fe9.png


功能图示


  • 功能页面路径图

从前端页面的角度,对系统的功能路径做一个概览,主要的功能路径可以直接在图里看到,图中不同的颜色块代表不同的模块功能和页面,规范的软件uml有条件再上。


e64f433c97a8a47f14850e80ecf44fd3_6659f52fadfb9ea60fa3ec743423b265.png


使用技术概览


  • python3,flask框架,hanlp做文字符号处理,numpy、pandas做数据分析处理,sqlite,mysql数据库,SQLAlchemy用作ORM框架,snownlp自然语言情绪值分析


  • vue3,vue-template开发


后端代码文件结构记录


使用的主要依赖包


  • beautifulsoup4
  • requests
  • Flask
  • hanlp
  • pandas
  • numpy
  • PyMySQL
  • SQLAlchemy
  • snownlp
  • jieba
  • xlrd 操作文件相关的库不在使用

文件结构 /weibo_sentiment


  • 数据分析计算模块 /analysis
  • 数据库配置模块 /database
  • 爬虫模块 /scrapy
  • ORM的model模块 /model
  • 前后端交互控制器 app app.py
  • 静态资源 /static
  • 使用帮助 help.md
  • 项目依赖 requirements.txt


前端代码文件结构记录


  • 使用的技术

vue全家桶之部分vue技术,在vue-template的基础上进行的开发,不必重复造轮子,可以节省大量的开发时间,提高开发效率。


vue主要应用的技术:


  • axios
  • echarts
  • element-ui
  • vue
  • vue-router


前端部分重要文件结构


  • /node_modules 依赖文件管理库
  • /public 公共静态资源存放文件夹
  • /src 核心文件
  • /api 前端的api接口请求方法
  • /components 页面复用组件
  • /router 页面路由面板
  • /styles 页面引用的样式库
  • /utils 工具库
  • /views 视图页面
  • /static 静态资源文件
  • /tests 测试模块文件
  • package.json vue项目的配置文件
  • vue.config.js vue项目代理、路由等配置文件

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
194 55
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
67 4
|
5天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
94 66
|
26天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
142 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
37 5
|
28天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
38 4
基于Python深度学习的果蔬识别系统实现
|
13天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
48 2
|
8月前
|
机器学习/深度学习 人工智能 大数据
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
351 6
|
Web App开发 SQL Python
书籍:Python金融大数据分析 Python for Finance_ Mastering Data-Driven Finance 2nd - 2019.pdf
简介 金融业最近以极高的速度采用了Python,一些最大的投资银行和对冲基金使用它来构建核心交易和风险管理系统。 针对Python 3进行了更新,本手册的第二版帮助您开始使用该语言,指导开发人员和定量分析师通过Python库和工具构建财务应用程序和交互式财务分析。
|
Python
《Python金融大数据分析》一导读
不久以前,在金融行业,Python作为一种编程语言和平台技术还被视为异端。相比之下,2014年有许多大型金融机构——如美国银行、美林证券的“石英”项目或者摩根大通的“雅典娜”项目——战略性地使用了Python和其他既定的技术,构建、改进和维护其核心IT系统。
2483 0