大数据基础和硬件介绍 2

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据基础和硬件介绍

9.磁盘阵列

磁盘RAID的基本介绍:


1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文 “A Case of Redundant Array of Inexpensive Disks” 中提出了 RAID 概念 [1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。随着磁盘成本和价格的不断降低, RAID 可以使用大部分的磁盘, “廉价” 已经毫无意义。因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用 “ 独立 ” 替代 “ 廉价 ” ,于时 RAID 变成了独立磁盘冗余阵列( Redundant Array of Independent Disks )。但这仅仅是名称的变化,实质内容没有改变.


9.1、RAID0基本介绍

RAID0 是一种简单的、无数据校验的数据条带化技术。实际上不是一种真正的 RAID ,因为它并不提供任何形式的冗余策略。 RAID0 将所在磁盘条带化后组成大容量的存储空间(如图 2 所示),将数据分散存储在所有磁盘中,以独立访问方式实现多块磁盘的并读访问。由于可以并发执行 I/O 操作,总线带宽得到充分利用。再加上不需要进行数据校验,RAID0 的性能在所有 RAID 等级中是最高的。理论上讲,一个由 n 块磁盘组成的 RAID0 ,它的读写性能是单个磁盘性能的 n 倍,但由于总线带宽等多种因素的限制,实际的性能提升低于理论值。


RAID0 具有低成本、高读写性能、 100% 的高存储空间利用率等优点,但是它不提供数据冗余保护,一旦数据损坏,将无法恢复。 因此, RAID0 一般适用于对性能要求严格但对数据安全性和可靠性不高的应用,如视频、音频存储、临时数据缓存空间等

20210408201827946.png



9.2、RAID1基本介绍

RAID1 称为镜像,它将数据完全一致地分别写到工作磁盘和镜像 磁盘,它的磁盘空间利用率为 50% 。 RAID1 在数据写入时,响应时间会有所影响,但是读数据的时候没有影响。 RAID1 提供了最佳的数据保护,一旦工作磁盘发生故障,系统自动从镜像磁盘读取数据,不会影响用户工作。


RAID1 与 RAID0 刚好相反,是为了增强数据安全性使两块 磁盘数据呈现完全镜像,从而达到安全性好、技术简单、管理方便。 RAID1 拥有完全容错的能力,但实现成本高。 RAID1 应用于对顺序读写性能要求高以及对数据保护极为重视的应用,如对邮件系统的数据保护



20210408201815555.png

9.3、RAID2基本介绍

RAID2 称为纠错海明码磁盘阵列,其设计思想是利用海明码实现数据校验冗余。海明码是一种在原始数据中加入若干校验码来进行错误检测和纠正的编码技术,其中第 2n 位( 1, 2, 4, 8, … )是校验码,其他位置是数据码。因此在 RAID2 中,数据按位存储,每块磁盘存储一位数据编码,磁盘数量取决于所设定的数据存储宽度,可由用户设定。图 4 所示的为数据宽度为 4 的 RAID2 ,它需要 4 块数据磁盘和 3 块校验磁盘。如果是 64 位数据宽度,则需要 64 块 数据磁盘和 7 块校验磁盘。可见, RAID2 的数据宽度越大,存储空间利用率越高,但同时需要的磁盘数量也越多。


海明码自身具备纠错能力,因此 RAID2 可以在数据发生错误的情况下对纠正错误,保证数据的安全性。它的数据传输性能相当高,设计复杂性要低于后面介绍的 RAID3 、 RAID4 和 RAID5 。


但是,海明码的数据冗余开销太大,而且 RAID2 的数据输出性能受阵列中最慢磁盘驱动器的限制。再者,海明码是按位运算, RAID2 数据重建非常耗时。由于这些显著的缺陷,再加上大部分磁盘驱动器本身都具备了纠错功能,因此 RAID2 在实际中很少应用,没有形成商业产品,目前主流存储磁盘阵列均不提供 RAID2 支持。


20210408201801855.png


9.4、RAID3基本介绍

RAID3 (图 5 )是使用专用校验盘的并行访问阵列,它采用一个专用的磁盘作为校验盘,其余磁盘作为数据盘,数据按位可字节的方式交叉存储到各个数据盘中。RAID3 至少需要三块磁盘,不同磁盘上同一带区的数据作 XOR 校验,校验值写入校验盘中。 RAID3 完好时读性能与 RAID0 完全一致,并行从多个磁盘条带读取数据,性能非常高,同时还提供了数据容错能力。向 RAID3 写入数据时,必须计算与所有同条带的校验值,并将新校验值写入校验盘中。一次写操作包含了写数据块、读取同条带的数据块、计算校验值、写入校验值等多个操作,系统开销非常大,性能较低。


如果 RAID3 中某一磁盘出现故障,不会影响数据读取,可以借助校验数据和其他完好数据来重建数据。假如所要读取的数据块正好位于失效磁盘,则系统需要读取所有同一条带的数据块,并根据校验值重建丢失的数据,系统性能将受到影响。当故障磁盘被更换后,系统按相同的方式重建故障盘中的数据至新磁盘。


RAID3 只需要一个校验盘,阵列的存储空间利用率高,再加上并行访问的特征,能够为高带宽的大量读写提供高性能,适用大容量数据的顺序访问应用,如影像处理、流媒体服务等。目前, RAID5 算法不断改进,在大数据量读取时能够模拟 RAID3 ,而且 RAID3 在出现坏盘时性能会大幅下降,因此常使用 RAID5 替代 RAID3 来运行具有持续性、高带宽、大量读写特征的应用。


20210408201746936.png


9.5、RAID4基本介绍

RAID4 与 RAID3 的原理大致相同,区别在于条带化的方式不同。 RAID4 (图 6 )按照 块的方式来组织数据,写操作只涉及当前数据盘和校验盘两个盘,多个 I/O 请求可以同时得到处理,提高了系统性能。 RAID4 按块存储可以保证单块的完整性,可以避免受到其他磁盘上同条带产生的不利影响。


RAID4 在不同磁盘上的同级数据块同样使用 XOR 校验,结果存储在校验盘中。写入数据时, RAID4 按这种方式把各磁盘上的同级数据的校验值写入校验 盘,读取时进行即时校验。因此,当某块磁盘的数据块损坏, RAID4 可以通过校验值以及其他磁盘上的同级数据块进行数据重建。


RAID4 提供了 非常好的读性能,但单一的校验盘往往成为系统性能的瓶颈。对于写操作, RAID4 只能一个磁盘一个磁盘地写,并且还要写入校验数据,因此写性能比较差。而且随着成员磁盘数量的增加,校验盘的系统瓶颈将更加突出。正是如上这些限制和不足, RAID4 在实际应用中很少见,主流存储产品也很少使用 RAID4 保护。


20210408201727442.png


9.6、RAID5基本介绍

RAID5 应该是目前最常见的 RAID 等级,它的原理与 RAID4 相似,区别在于校验数据分布在阵列中的所有磁盘上,而没有采用专门的校验磁盘。对于数据和校验数据,它们的写操作可以同时发生在完全不同的磁盘上。因此, RAID5 不存在 RAID4 中的并发写操作时的校验盘性能瓶颈问题。另外, RAID5 还具备很好的扩展性。当阵列磁盘 数量增加时,并行操作量的能力也随之增长,可比 RAID4 支持更多的磁盘,从而拥有更高的容量以及更高的性能。


RAID5 (图 7)的磁盘上同时存储数据和校验数据,数据块和对应的校验信息存保存在不同的磁盘上,当一个数据盘损坏时,系统可以根据同一条带的其他数据块和对应的校验数据来重建损坏的数据。与其他 RAID 等级一样,重建数据时, RAID5 的性能会受到较大的影响。


RAID5 兼顾存储性能、数据安全和存储成本等各方面因素,它可以理解为 RAID0 和 RAID1 的折中方案,是目前综合性能最佳的数据保护解决方案。 RAID5 基本上可以满足大部分的存储应用需求,数据中心大多采用它作为应用数据的保护方案。

20210408201710334.png



10 集群Linux环境搭建

10.1 注意事项

10.1.1 windows系统确认所有的关于VmWare的服务都已经启动

2021040820194118.png


10.1.2 确认好VmWare生成的网关地址

20210408202000437.png


10.1.3 确认VmNet8网卡已经配置好了IP地址和DNS

20210408202032203.png


10.2 复制虚拟机

10.2.1 将虚拟机文件夹复制三份,并分别重命名, 并使用VM打开重命名

20210408202223255.png


10.2.2分别设置三台虚拟机的内存

需要三台虚拟机, 并且需要同时运行, 所以总体上的占用为: 秠癷虚拟机茫存

在分配的时候, 需要在总内存大小的基础上, 减去2G-4G作为系统内存, 剩余的除以3, 作为每台虚拟机的内存


20210408202332501.png


10.3:虚拟机修改Mac和IP

10.3.1 集群规划

20210408202423146.png

10.3.2 :设置ip和Mac地址

vim /etc/udev/rules.d/70-persistent-net.rules

20210408202525443.png

每台虚拟机更改IP地址:

vim /etc/sysconfig/network-scripts/ifcfg-eth0

20210408202544818.png

每台虚拟机修改对应主机名


vi /ect/sysconfig/network
HOSTNAME=node01

每台虚拟机 设置ip和域名映射

vim /etc/hosts

20210408202634285.png

10.3.3 inux系统重启

关机重启linux系统即可进行联网了

第二台第三台机器重复上述步骤,并设置IP网址为192.168.174.110,192.168.174.120


10.4:虚拟机关闭防火墙和SELinux

10.4.1 关闭防火墙

三台机器执行以下命令(root用户来执行)

service iptables stop   #关闭防火墙
chkconfig iptables off  #禁止开机启动

10.4.2 三台机器关闭selinux

什么是SELinux

1.SELinux是Linux的一种安全子系统

2.Linux中的权限管理是针对于文件的, 而不是针对进程的, 也就是说, 如果root启动了某

个进程, 则这个进程可以操作任何一个文件

SELinux在Linux的文件权限之外, 增加了对进程的限制, 进程只能在进程允许的范围内

操作资源

3.为什么要关闭SELinux

如果开启了SELinux, 需要做非常复杂的配置, 才能正常使用系统, 在学习阶段, 在非生

产环境, 一般不使用SELinux

4.SELinux的工作模式

enforcing 强制模式

permissive 宽容模式

disable 关闭

修改selinux的配置文件

vi /etc/selinux/config

20210408202833370.png

10.5 虚拟机免密码登录

20210408203115183.png

为什么要免密登录

Hadoop 节点众多, 所以一般在主节点启动从节点, 这个时候就需要程序自动在主节点

登录到从节点中, 如果不能免密就每次都要输入密码, 非常麻烦

免密 SSH 登录的原理


需要先在 B节点 配置 A节点 的公钥

A节点 请求 B节点 要求登录

B节点 使用 A节点 的公钥, 加密一段随机文本

A节点 使用私钥解密, 并发回给 B节点

B节点 验证文本是否正确

第一步:三台机器生成公钥与私钥

在三台机器执行以下命令,生成公钥与私钥

ssh-keygen -t rsa

执行该命令之后,按下三个回车即可

20210408203214594.png

第二步:拷贝公钥到同一台机器

三台机器将拷贝公钥到第一台机器

三台机器执行命令:

ssh-copy-id node01

第三步:复制第一台机器的认证到其他机器

将第一台机器的公钥拷贝到其他机器上

在第一天机器上面指向以下命令

scp /root/.ssh/authorized_keys node02:/root/.ssh

scp /root/.ssh/authorized_keys node03:/root/.ssh


20210408203237448.png

10.6:三台机器时钟同步

为什么需要时间同步

因为很多分布式系统是有状态的, 比如说存储一个数据, A节点 记录的时间是 1, B节点 记录

的时间是 2, 就会出问题

方式 1:

所有主机和同一台主机的时间保持同步

方式2:

通过网络,所有主机和时钟同步服务器保持同步

## 安装
yum install -y ntp
## 启动定时任务
crontab -e

随后在输入界面键入

*/1 * * * * /usr/sbin/ntpdate ntp4.aliyun.com;
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
存储 固态存储 大数据
大数据基础和硬件介绍 1
大数据基础和硬件介绍
258 0
|
缓存 大数据 应用服务中间件
Memcached缓存大数据时对服务器内存、CPU的影响及其对硬件的配置需求
最近公司在进行缓存框架方面的调研,我主要对Memcached在缓存大数据量情况下对系统硬件的影响和需求做了调研,以下是一些测试数据和调研结果:  Memcached缓存不同数据量测试情况:           一、测试环境配置信息    1. 缓存服务器配置信息:一共4台 ,三台是公司服务器,一台是本机         node1
1459 0
|
29天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
8天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
40 1
|
30天前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
46 3
|
2天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
10 3
|
2天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
12 2