大数据Hive入门案例

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据Hive入门案例

1 体验1:Hive使用起来和Mysql差不多吗?

1.1 背景

对于初次接触Apache Hive的人来说,最大的疑惑就是:Hive从数据模型看起来和关系型数据库mysql等好像。包括Hive SQL也是一种类SQL语言。那么实际使用起来如何?

1.2 过程

体验步骤:按照mysql的思维,在hive中创建、切换数据库,创建表并执行插入数据操作,最后查询是否插入成功。

create database itcast;--创建数据库
show databases;--列出所有数据库
use itcast;--切换数据库

9a5dce43bf164dc99b4caae97dbfc746.png

--建表
create table t_student(id int,name varchar(255));
--插入一条数据
insert into table t_student values(1,"allen");
--查询表数据
select * from t_student;

在执行插入数据的时候,发现插入速度极慢,sql执行时间很长,为什么?

最终插入一条数据,历史30秒的时间。

查询表数据,显示数据插入成功

1.3 验证

首先登陆Hadoop YARN上观察是否有MapReduce任务执行痕迹。

YARN Web UI: http://resourcemanager_host:8088/

然后登陆Hadoop HDFS浏览文件系统,根据Hive的数据模型,表的数据最终是存储在HDFS和表对应的文件夹下的。

HDFS Web UI: http://namenode_host:9870/

1.4 结论

➢ Hive SQL 语法和标准 SQL 很类似,使得学习成本降低不少。

➢ Hive 底层是通过 MapReduce 执行的数据插入动作,所以速度慢。

➢ 如果大数据集这么一条一条插入的话是非常不现实的,成本极高。

➢ Hive 应该具有自己特有的数据插入表方式,结构化文件映射成为表。

2 体验2:如何才能将结构化数据映射成为表?

2.1 背景

在Hive中,使用insert+values语句插入数据,底层是通过MapReduce执行的,效率十分低下。此时回到Hive的本质上:可以将结构化的数据文件映射成为一张表,并提供基于表的SQL查询分析。

假如,现在有一份结构化的数据文件,如何才能映射成功呢?在映射成功的过程中需要注意哪些问题?不妨猜想文件的存储路径?字段类型?字段顺序?字段之间的分隔符问题?


2.2 过程

在HDFS根目录下创建一个结构化数据文件user.txt,里面内容如下

1,zhangsan,18,beijing
2,lisi,25,shanghai
3,allen,30,shanghai
4,woon,15,nanjing
5,james,45,hangzhou
6,tony,26,beijing

在 hive 中创建一张表 t_user。注意: 字段的类型顺序要和文件中字段保持

一致。

create table t_user(id int,name varchar(255),age int,city varchar(255));

2.3 验证

执行数据查询操作,发现表中并没有数据。

猜想:难道数据文件要放置在表对应的HDFS路径下才可以成功?

再次执行查询操作,显示如下,都是null:

表感知到结构化文件的存在,但是并没有正确识别文件中的数据。猜想:还需要指定文件中字段之间的分隔符?重建张新表,指定分隔符。

--建表语句 增加分隔符指定语句
create table t_user_1(id int,name varchar(255),age int,city varchar(255))
row format delimited
fields terminated by ',';
--关于分隔符语法 后续学习展开
#把user.txt文件从本地文件系统上传到hdfs
hadoop fs -put user.txt /user/hive/warehouse/itcast.db/t_user_1/
--执行查询操作
select * from t_user_1;

此时再创建一张表,保存分隔符语法,但是故意使得字段类型和文件中不一致。

--建表语句 增加分隔符指定语句
create table t_user_2(id int,name int,age varchar(255),city varchar(255))
row format delimited
fields terminated by ',';
#把user.txt文件从本地文件系统上传到hdfs
hadoop fs -put user.txt /user/hive/warehouse/itcast.db/t_user_2/
--执行查询操作
select * from t_user_2;

此时发现,有的列显示null,有的列显示正常。

name字段本身是字符串,但是建表的时候指定int,类型转换不成功;age是数值类型,建表指定字符串类型,可以转换成功。说明hive中具有自带的类型转换功能,但是不一定保证转换成功。


2.4 结论

要想在hive中创建表跟结构化文件映射成功,需要注意以下几个方面问题:

➢ 创建表时,字段顺序、字段类型要和文件中保持一致。

➢ 如果类型不一致,hive会尝试转换,但是不保证转换成功。不成功显示null。

➢ 文件好像要放置在 Hive 表对应的 HDFS 目录下,其他路径可以吗?

➢ 建表的时候好像要根据文件内容指定分隔符,不指定可以吗?


3 体验3:使用hive进行小数据分析如何?

3.1 背景

因为Hive是基于HDFS进行文件的存储,所以理论上能够支持的数据存储规模很大,天生适合大数据分析。假如Hive中的数据是小数据,再使用Hive开展分析效率如何呢?


3.2 过程

之前我们创建好了一张表t_user_1,现在通过Hive SQL找出当中年龄大于20岁的有几个。

3.3 验证

--执行查询操作
select count(*) from t_user_1 where age > 20;

3.4 结论

➢ Hive 底层的确是通过 MapReduce 执行引擎来处理数据的

➢ 执行完一个 MapReduce 程序需要的时间不短

➢ 如果是小数据集,使用 hive 进行分析将得不偿失,延迟很高

➢ 如果是大数据集,使用 hive 进行分析,底层 MapReduce 分布式计算,很爽

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
86 0
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
203 0
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
73 0
|
2月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
37 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
2月前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
43 1
|
2月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
51 3
|
2月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
49 1
|
2月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
42 2
|
2月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
62 1
|
2月前
|
存储 SQL 分布式计算
大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
256 0