Python metaclass 的原理和应用(上)

简介: Python metaclass 的原理和应用

元编程(meta programming)是一项很神奇的能力,可以通过代码在运行时动态生成代码。

元类(meta classes)是 Python 提供的一种元编程的能力。在 Python 中,类也是一种对象,那么类这种对象就是元类的实例,所以我们可以在运行时通过实例化元类动态生成类。

使用 type “函数”

首先我们来了解一下 type,type 可以作为函数使用,用来获得对象的类型:

>>> class Foo:
... pass
>>> obj = Foo()
>>> obj.__class__
<class '__main__.Foo'>
>>> type(obj)
<class '__main__.Foo'>
>>> obj.__class__ is type(obj)
True

实际上 type 并不是一个函数,而是一个类,我们可以使用 type(type) 来确定一下:

>>> type(type)
<class 'type'>

type 实际上不只是类,而是一个“元类”。我们接下来要可以看到,所有的元类都需要继承自 type。type 是所以类的元类,所以在上面的例子中 x 是 Foo 的实例,Foo 是 type 的实例,type 又是他自己的实例。640.png


用 type 动态创建类

如果传递给 type 的参数是三个的时候,type 的语义就不再是返回给定参数的类,而是实例化生成一个新的类。

type(name: str, bases: tuple, namespace: dict)

第一个参数是新生成的类的名字;第二个参数是新生成的类的基类列表;第三个参数是要个这个类绑定的属性的列表,比如说这个类的一些方法。实际上 class Foo 这种语法只是使用 type 生成类的语法糖而已。

最简单的一个例子,比如我们要创建 Foo[0..9] 这些类,可以这样做:

classes = []
for i in range(10):
    cls = type("Foo%s" % i, tuple(), {})
    classes.append(cls)
# 就像使用普通类一样初始化 Foo0
foo0  = clssses[0]()

如果要实现类的方法,一定要记得同样是要使用 self 变量的。在 Python 中 self 只是一个约定俗成的变量,而不是关键字。

def __init__(self, name):
    self.name = name
def print_name(self):
    print(self.name)
Duck = type("Duck", tuple(), {"__init__": __init__, "print_name": print_name})
duck = Duck("Donald")
duck.print_name()
# Donald

创建自己的元类

首先我们来回顾一下 Python 中类的初始化过程:

foo = Foo()

当这条语句运行的时候,Python 会依次调用 Foo 的 __new____init__ 方法。其中 __new__ 方法在 __init__ 之前调用,并返回已经创建好的新对象,而 __init__ 函数是没有返回结果的。一般情况下,我们都会覆盖 __init__ 方法来对新创建的对象做一些初始化操作。

现在回归到元类上,进入烧脑部分。前面我们说过元类的实例化就是类,所以大致相当于:

Foo = MetaFoo(name, bases, attrs)  # MetaFoo 默认情况下是 type
foo = Foo()

默认情况下,所有类的元类是 type,也就是在这个类是通过 type 来创建的,这和前面说的通过 type 来动态创建类也是一致的。

那么怎样定义一个 MetaFoo 呢?只需要继承自 type 就行了。因为元类的实例化就是类的创建过程,所以在元类中,我们可以修改 __new__ 来在 __init__ 之前对新创建的类做一些操作。

>>> class MetaFoo(type):
... def __new__(cls, name, bases, namespace):
...         x = super().__new__(cls, name, bases, namespace)  # super实际上就是 type
...         x.bar = 100# 为这个类增加一个属性
... return x
...
>>> Foo = MetaFoo("Foo", tuple(), {})  # MetaFoo 在这里就相当于 type 了,可以动态创建类
>>> Foo.bar
100
>>> foo = Foo()
>>> foo.bar
100

在这里我们创建了 MetaFoo 这个元类,他会给新创建的类增加一个叫做 bar 的属性。

在实际的代码中,我们一般还是不会直接动态生成类的,还是调用 class Foo 语法来生成类比较常见一点,这时候可以指定 metaclass 参数就好了。可以通过 Foo(metaclass=MetaFoo) 这种方式来指定元类。

class Foo(metaclass=MetaFoo):
    pass

这种定义和上面的元类用法效果完全是一致的。

目录
相关文章
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
70 20
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
21天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
20天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
122 9
|
2月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
160 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
26天前
|
存储 SQL 大数据
Python 在企业级应用中的两大硬伤
关系数据库和SQL在企业级应用中面临诸多挑战,如复杂SQL难以移植、数据库负担重、应用间强耦合等。Python虽是替代选择,但在大数据运算和版本管理方面存在不足。SPL(esProc Structured Programming Language)作为开源语言,专门针对结构化数据计算,解决了Python的这些硬伤。它提供高效的大数据运算能力、并行处理、高性能文件存储格式(如btx、ctx),以及一致的版本管理,确保企业级应用的稳定性和高性能。此外,SPL与Java无缝集成,适合现代J2EE体系应用,简化开发并提升性能。
|
1月前
|
安全 数据挖掘 编译器
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
66 6
|
2月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
48 5
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
74 0
|
8月前
|
数据采集 数据可视化 大数据
Python在大数据处理中的应用实践
Python在大数据处理中扮演重要角色,借助`requests`和`BeautifulSoup`抓取数据,`pandas`进行清洗预处理,面对大规模数据时,`Dask`提供分布式处理能力,而`matplotlib`和`seaborn`则助力数据可视化。通过这些工具,数据工程师和科学家能高效地管理、分析和展示海量数据。
401 4

热门文章

最新文章