如何实现按键的短按、长按检测?

简介: 如何实现按键的短按、长按检测?

在电子产品中经常用到按键,尤其是经常需要MCU判断短按长按这两种动作,本篇我们来专门聊下这个话题。

只谈理论太无聊,我们还是结合着实际应用来说明。之前写过一篇关于《CH573第一篇:实现自拍杆蓝牙遥控器1》的文章,例子默认的功能是蓝牙连接后不断的发送数据,从而不断的拍照。而实际中的遥控器通常是按一次按键,控制一次,我们在来实现该功能。

板子上只有两个按键,一个是RESET按键,一个是DOWNLOAD按键,我们使用DOWNLAOD按键,按键的一端接GND,另外一端接CH573的PB22引脚。

原理图中有一个NC的C5,但是实际板子上我却没有找到它,可能是版本不一致。

提前说明一下:CH573的代码里跑了TMOS(Task Management Operating System),可以理解为一个简单的操作系统,所以下面的代码一般的裸机代码看着略有不同,不过核心思想都是一样的,用在其他地方也很容易移植,只需要将其中的定时器部分改写即可。

最初我是这么做的,把PB22配置为上拉输入,开启下降沿中断,在中断服务函数里,启动一个事件,执行蓝牙发送。代码如下:

void Key_Init()
{
  GPIOB_ModeCfg( GPIO_Pin_22, GPIO_ModeIN_PU );
  GPIOB_ITModeCfg( GPIO_Pin_22, GPIO_ITMode_FallEdge );
  PFIC_EnableIRQ( GPIO_B_IRQn );
}
void GPIOB_IRQHandler( void )
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
  {
      GPIOB_ClearITFlagBit( GPIO_Pin_22);
      tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
  }
}

这么写能工作,但是有问题,就是经常会出现按一下误判为多次按下。原因大家应该都清楚,因为按键存在抖动,所以一次按下有可能进入多次进入中断。

理想中的按下-弹起波形是这样的:

但是实际由于按键抖动的存在,实际的波形可能是这样的:

不信的话你可以接上示波器看看,或者软件验证,比如在GPIO中断服务函数里,设置一个全局变量,让它每次进入中断后加1,按按键观察这个变量的值。

那么该如何消除抖动呢?一种方法是硬件消抖,即按键两端并联一个小电容(电容大小由按键的机械特性来决定),另外一种方法是我们今天要重点介绍的软件消抖。

方法一:常用的加延时函数

在中断服务函数中加一个比如10ms的延时函数,延时时间的长短取决于实际所用的按键特性,只要延时时间比抖动时间略大即可。原理很简单,加了延时就避开了抖动的这段时间,在延时之后判断引脚电平,如果为低电平就表示是按下。

void GPIOB_IRQHandler( void )
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
  {
      mDelaymS(10);
      if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
          tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
      GPIOB_ClearITFlagBit( GPIO_Pin_22);
  }
}

这个方法很简单,但是不好的地方是延时占用MCU资源。尤其是这里的BLE应用,在中断服务函数中执行时间长会引起蓝牙连接中断,所以这里不能这么用,我实际测试当按键按快一点就很容易引起蓝牙连接中断。

方法二:加定时器

它的原理和方法一类似,只不过是不在中断服务函数中阻塞等待,而是用一个定时器,代码如下:

void GPIOB_IRQHandler( void )
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
  {
      GPIOB_ClearITFlagBit( GPIO_Pin_22);
      tmos_stop_task(hidEmuTaskId, START_DEBOUNCE_EVT);
      tmos_start_task(hidEmuTaskId, START_DEBOUNCE_EVT,16);
  }
}
    if(events & START_DEBOUNCE_EVT)
    {
        if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
        {
            PRINT("short press\n");
            tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
        }
        return (events ^ START_DEBOUNCE_EVT);
    }

它的逻辑是每次抖动的下降沿重新开启10ms定时器,在定时器时间到之后判断IO电平状态来判断按键是否按下。

需要注意的是:10ms定时器不是一个周期性的定时器,它是一次性的,即时间到了之后就停止计时了。另外每次进中断后先让定时器重新重头开始计时。如果大家用其他代码实现时要注意这两点。

此方法的好处不像加延时函数那样占用MCU资源。我实际测试这个方法可用,不会引起蓝牙连接中断。

以上介绍了使用中断的方式来判断按键短按,可以看到它判断的依据是按键按下(由高电平变到低电平)这个状态。下面在方法二的基础上我们来实现长按的检测,判断长按的依据是按下后持续的维持一段时间低电平。代码如下:

if(events & START_DEBOUNCE_EVT)
{
    if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
    {
        PRINT("short press\n");
        tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
        tmos_start_task( hidEmuTaskId, START_LONGCHECK_TIMER,16 );
    }
    return (events ^ START_DEBOUNCE_EVT);
}
    if(events & START_LONGCHECK_TIMER)
    {
        static int cnt=0;
        if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
        {
            cnt++;
            if(cnt>100)
            {
                PRINT("long press\n");
                tmos_stop_task( hidEmuTaskId, START_LONGCHECK_TIMER);
                cnt =0;
            }
            else
                tmos_start_task( hidEmuTaskId, START_LONGCHECK_TIMER,16 );
        }
        else
        {
            cnt=0;
            tmos_stop_task( hidEmuTaskId, START_LONGCHECK_TIMER );
        }
        return (events ^ START_LONGCHECK_TIMER);
    }

实现的逻辑是:当检测到短按时,再开启一个10ms定时器,在定时器到时之中判断电平状态,如果为低电平,就让cnt变量加1,否则cnt=0,当cnt>100,即低电平持续1s认为是长按。我在这里当判断到长按之后或者IO变高之后会停止掉这个定时器,否则周期定时,因为没必要一直开着定时器。

除了上述的中断方式,还可以使用轮询的方式来实现,代码如下:

void Key_Init()
{
  GPIOB_ModeCfg( GPIO_Pin_22, GPIO_ModeIN_PU );
}
if(events & START_KEYSCAN_EVT)
{
    KeyScan();
    tmos_start_task(hidEmuTaskId, START_KEYSCAN_EVT,160);// 100ms执行一次KeyScan()
    return (events ^ START_KEYSCAN_EVT);
}
bool key_press_flag = false;      // 按下标志
bool key_long_press_flag = false; // 长按标志
void KeyScan()
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22) == 0) // 低电平
  {
    if(key_press_flag == false)
      tmos_start_task( hidEmuTaskId, START_LONGCHECK_TIMER, 1600 ); // 启动1s定时器
    key_press_flag = true;    // 置位按下标志
  }
  else if(key_press_flag == true) // 高电平同时按键被按下过 ,表示是按下后的弹起
  {
      key_press_flag = false; // 清除按下标志
      if(key_long_press_flag == false)// 短按后的弹起
      {
        tmos_stop_task(hidEmuTaskId, START_LONGCHECK_TIMER);
        PRINT("short press\n");
        tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
      }
      else // 长按后的弹起
      {
          key_long_press_flag =false;
      }
  }
  else
  {
    key_press_flag = false;
    key_long_press_flag = false;
  }
}
if(events & START_LONGCHECK_TIMER)
{
    key_long_press_flag =true;
    PRINT("long press\n");
    return (events ^ START_LONGCHECK_TIMER);
}

上面的这段代码初次看着有点绕,但是看明白了之后会觉得这个实现逻辑还是挺好的,注释写了,这里不再详细解释了,我在多个项目里使用的都是它。它兼顾了去抖和短按/长按的检测,并且长按可以判断出长按按下/长按弹起。短按是检测到弹起时认为是短按动作。另外如果想同时支持多个长按,也很方便添加。

轮询和中断各有优缺点,大家可以根据实际情况来选择,你一般常用哪种方式呢?


相关文章
|
5月前
51单片机用汇编语言实现独立按键检测,每个按键有不同功能,包含按键消抖程序
51单片机用汇编语言实现独立按键检测,每个按键有不同功能,包含按键消抖程序
153 3
|
物联网
STM32:TIM输入捕获硬件部分(内含:1.输入捕获简介+2.频率测量+3.通用/高级定时器的输入捕获电路分析(重点)+4.主从触发模式+5.输入捕获基本结构(重点)+6.PWM基本结构)
STM32:TIM输入捕获硬件部分(内含:1.输入捕获简介+2.频率测量+3.通用/高级定时器的输入捕获电路分析(重点)+4.主从触发模式+5.输入捕获基本结构(重点)+6.PWM基本结构)
556 0
STM32:TIM输入捕获硬件部分(内含:1.输入捕获简介+2.频率测量+3.通用/高级定时器的输入捕获电路分析(重点)+4.主从触发模式+5.输入捕获基本结构(重点)+6.PWM基本结构)
|
程序员 芯片
键盘检测原理及应用实现介绍2
独立式键盘的检测原理和应用实现还可以进一步介绍如下: 4. 检测原理:独立式键盘通常使用机械开关作为按键的接触点。机械开关是一种通过机械力将两个金属触点闭合的开关。当按键被按下时,触点闭合,电路连通,通过检测电路状态可以确定按键是否被按下。 5. 应用实现:独立式键盘的检测与行列扫描不同,每个按键有独立的电路接触点,因此不需要扫描整个键盘矩阵。常见的应用实现是使用键盘控制器芯片,它具有多个输入引脚来连接各个按键的接触点,通过检测引脚的状态来确定按键是否被按下。 6. 应用场景:独立式键盘在一些对触感、耐用性和反馈要求较高的场景中得到广泛应用。以下是一些典型的独立式键盘应用场景: - 机械
143 3
|
8月前
|
缓存 编译器 索引
单片机中按键检测函数详细分析经典
单片机中按键检测函数详细分析经典
214 0
|
数据安全/隐私保护 芯片 智能硬件
键盘检测原理及应用实现介绍1
键盘是计算机、手机、平板电脑等设备上最常用的输入设备之一。它是用来输入文本、命令和控制操作的重要工具。键盘检测原理是指如何检测用户按下或释放键盘上的按键,并将按键的信息传递给计算机或其他设备进行相应的处理。 键盘检测原理可以分为两种类型:矩阵式键盘和独立式键盘。下面将分别介绍这两种键盘检测原理及其应用实现。 一、矩阵式键盘检测原理及应用实现: 矩阵式键盘是最常见的键盘类型之一,它由多个按键组成,并且按键排列成矩阵的形式。常见的矩阵式键盘为4x4或3x4排列,即有4行或3行各有4列的按键。以下是矩阵式键盘的检测原理及应用实现: 1. 检测原理:矩阵式键盘使用行列扫描的方式进行按键检测。键
247 0
|
算法 C语言 芯片
按键扫描程序,仅三行程序
按键扫描程序,仅三行程序
126 0
|
物联网 开发者
按键中断演示|学习笔记
快速学习按键中断演示
按键中断演示|学习笔记