Java Thread.interrupt 害人! 中断JAVA线程

简介:
程序是很简易的。然而,在编程人员面前,多线程呈现出了一组新的难题,如果没有被恰当的解决,将导致意外的行为以及细微的、难以发现的错误。
      在本篇文章中,我们针对这些难题之一:如何中断一个正在运行的线程。 
                                                                                    
背景
    中断(Interrupt)一个线程意味着在该线程完成任务之前停止其正在进行的一切,有效地中止其当前的操作。线程是死亡、还是等待新的任务或是继续运行至下一步,就取决于这个程序。虽然初次看来它可能显得简单,但是,你必须进行一些预警以实现期望的结果。你最好还是牢记以下的几点告诫。

    首先,忘掉Thread.stop方法。虽然它确实停止了一个正在运行的线程,然而,这种方法是不安全也是不受提倡的,这意味着,在未来的JAVA版本中,它将不复存在。

    一些轻率的家伙可能被另一种方法Thread.interrupt所迷惑。尽管,其名称似乎在暗示着什么,然而,这种方法并不会中断一个正在运行的线程(待会将进一步说明),正如Listing A中描述的那样。它创建了一个线程,并且试图使用Thread.interrupt方法停止该线程。Thread.sleep()方法的调用,为线程的初始化和中止提供了充裕的时间。线程本身并不参与任何有用的操作。

class Example1 extends Thread {
            boolean stop=false;
            public static void main( String args[] ) throws Exception {
            Example1 thread = new Example1();
            System.out.println( "Starting thread..." );
            thread.start();
            Thread.sleep( 3000 );
            System.out.println( "Interrupting thread..." );
            thread.interrupt();
            Thread.sleep( 3000 );
            System.out.println("Stopping application..." );
            //System.exit(0);
            }
            public void run() {
            while(!stop){
            System.out.println( "Thread is running..." );
            long time = System.currentTimeMillis();
            while((System.currentTimeMillis()-time < 1000)) {
            }
            }
            System.out.println("Thread exiting under request..." );
            }
            }

如果你运行了Listing A中的代码,你将在控制台看到以下输出:

Starting thread...

Thread is running...

Thread is running...

Thread is running...

Interrupting thread...

Thread is running...

Thread is running...

Thread is running...

Stopping application...

Thread is running...

Thread is running...

Thread is running...
............................... 
甚至,在Thread.interrupt()被调用后,线程仍然继续运行。

真正地中断一个线程

    中断线程最好的,最受推荐的方式是,使用共享变量(shared variable)发出信号,告诉线程必须停止正在运行的任务。线程必须周期性的核查这一变量(尤其在冗余操作期间),然后有秩序地中止任务。Listing B描述了这一方式。

Listing B
class Example2 extends Thread {

  volatile boolean stop = false;

  public static void main( String args[] ) throws Exception {

    Example2 thread = new Example2();

   System.out.println( "Starting thread..." );

   thread.start();

   Thread.sleep( 3000 );

   System.out.println( "Asking thread to stop..." );

   thread.stop = true;

   Thread.sleep( 3000 );

   System.out.println( "Stopping application..." );

   //System.exit( 0 );

  }

  public void run() {

    while ( !stop ) {

     System.out.println( "Thread is running..." );

      long time = System.currentTimeMillis();

      while ( (System.currentTimeMillis()-time < 1000) && (!stop) ) {

      }

    }

   System.out.println( "Thread exiting under request..." );

  }

}
 
运行Listing B中的代码将产生如下输出(注意线程是如何有秩序的退出的)

Starting thread...

Thread is running...

Thread is running...

Thread is running...

Asking thread to stop...

Thread exiting under request...

Stopping application...

   虽然该方法要求一些编码,但并不难实现。同时,它给予线程机会进行必要的清理工作,这在任何一个多线程应用程序中都是绝对需要的。请确认将共享变量定义成volatile 类型或将对它的一切访问封入同步的块/方法(synchronized blocks/methods)中。

到目前为止一切顺利!但是,当线程等待某些事件发生而被阻塞,又会发生什么?当然,如果线程被阻塞,它便不能核查共享变量,也就不能停止。这在许多情况下会发生,例如调用Object.wait()、ServerSocket.accept()和DatagramSocket.receive()时,这里仅举出一些。

他们都可能永久的阻塞线程。即使发生超时,在超时期满之前持续等待也是不可行和不适当的,所以,要使用某种机制使得线程更早地退出被阻塞的状态。

很不幸运,不存在这样一种机制对所有的情况都适用,但是,根据情况不同却可以使用特定的技术。在下面的环节,我将解答一下最普遍的例子。

使用Thread.interrupt()中断线程


  正如Listing A中所描述的,Thread.interrupt()方法不会中断一个正在运行的线程。这一方法实际上完成的是,在线程受到阻塞时抛出一个中断信号,这样线程就得以退出阻塞的状态。更确切的说,如果线程被Object.wait, Thread.join和Thread.sleep三种方法之一阻塞,那么,它将接收到一个中断异常(InterruptedException),从而提早地终结被阻塞状态。

    因此,如果线程被上述几种方法阻塞,正确的停止线程方式是设置共享变量,并调用interrupt()(注意变量应该先设置)。如果线程没有被阻塞,这时调用interrupt()将不起作用;否则,线程就将得到异常(该线程必须事先预备好处理此状况),接着逃离阻塞状态。在任何一种情况中,最后线程都将检查共享变量然后再停止。Listing C这个示例描述了该技术。

Listing C
class Example3 extends Thread {

  volatile boolean stop = false;

  public static void main( String args[] ) throws Exception {

   Example3 thread = new Example3();

   System.out.println( "Starting thread..." );

   thread.start();

   Thread.sleep( 3000 );

   System.out.println( "Asking thread to stop..." );

   thread.stop = true;//如果线程阻塞,将不会检查此变量

   thread.interrupt();

   Thread.sleep( 3000 );

   System.out.println( "Stopping application..." );

   //System.exit( 0 );

  }

  public void run() {

    while ( !stop ) {

     System.out.println( "Thread running..." );

      try {

      Thread.sleep( 1000 );

      } catch ( InterruptedException e ) {

      System.out.println( "Thread interrupted..." );

      }

    }

   System.out.println( "Thread exiting under request..." );

  }

}

一旦Listing C中的Thread.interrupt()被调用,线程便收到一个异常,于是逃离了阻塞状态并确定应该停止。运行以上代码将得到下面的输出:

Starting thread...

Thread running...

Thread running...

Thread running...

Asking thread to stop...

Thread interrupted...

Thread exiting under request...

Stopping application...


中断I/O操作
    然而,如果线程在I/O操作进行时被阻塞,又会如何?I/O操作可以阻塞线程一段相当长的时间,特别是牵扯到网络应用时。例如,服务器可能需要等待一个请求(request),又或者,一个网络应用程序可能要等待远端主机的响应。

如果你正使用通道(channels)(这是在Java 1.4中引入的新的I/O API),那么被阻塞的线程将收到一个ClosedByInterruptException异常。如果情况是这样,其代码的逻辑和第三个例子中的是一样的,只是异常不同而已。

但是,你可能正使用Java1.0之前就存在的传统的I/O,而且要求更多的工作。既然这样,Thread.interrupt()将不起作用,因为线程将不会退出被阻塞状态。Listing D描述了这一行为。尽管interrupt()被调用,线程也不会退出被阻塞状态

Listing D
import java.io.*;

class Example4 extends Thread {

  public static void main( String args[] ) throws Exception {

    Example4 thread = new Example4();

   System.out.println( "Starting thread..." );

   thread.start();

   Thread.sleep( 3000 );

   System.out.println( "Interrupting thread..." );

   thread.interrupt();

   Thread.sleep( 3000 );

   System.out.println( "Stopping application..." );

   //System.exit( 0 );

  }

  public void run() {

   ServerSocket socket;

    try {

      socket = new ServerSocket(7856);

    } catch ( IOException e ) {

     System.out.println( "Could not create the socket..." );

      return;

    }

    while ( true ) {

     System.out.println( "Waiting for connection..." );

      try {

       Socket sock = socket.accept();

      } catch ( IOException e ) {

      System.out.println( "accept() failed or interrupted..." );

      }

    }

  }

}


   很幸运,Java平台为这种情形提供了一项解决方案,即调用阻塞该线程的套接字的close()方法。在这种情形下,如果线程被I/O操作阻塞,该线程将接收到一个SocketException异常,这与使用interrupt()方法引起一个InterruptedException异常被抛出非常相似。

唯一要说明的是,必须存在socket的引用(reference),只有这样close()方法才能被调用。这意味着socket对象必须被共享。Listing E描述了这一情形。运行逻辑和以前的示例是相同的。

Listing E
import java.net.*;
import java.io.*;
class Example5 extends Thread {
  volatile boolean stop = false;
  volatile ServerSocket socket;
  public static void main( String args[] ) throws Exception {
    Example5 thread = new Example5();
   System.out.println( "Starting thread..." );
   thread.start();
   Thread.sleep( 3000 );
   System.out.println( "Asking thread to stop..." );
   thread.stop = true;
   thread.socket.close();
   Thread.sleep( 3000 );
   System.out.println( "Stopping application..." );
   //System.exit( 0 );
  }
  public void run() {
    try {
      socket = new ServerSocket(7856);
    } catch ( IOException e ) {
     System.out.println( "Could not create the socket..." );
      return;
    }
    while ( !stop ) {
     System.out.println( "Waiting for connection..." );
      try {
       Socket sock = socket.accept();
      } catch ( IOException e ) {
      System.out.println( "accept() failed or interrupted..." );
      }
    }
   System.out.println( "Thread exiting under request..." );
  }
}
以下是运行Listing E中代码后的输出:

Starting thread...

Waiting for connection...

Asking thread to stop...

accept() failed or interrupted...

Thread exiting under request...

Stopping application...

多线程是一个强大的工具,然而它正呈现出一系列难题。其中之一是如何中断一个正在运行的线程。如果恰当地实现,使用上述技术中断线程将比使用Java平台上已经提供的内嵌操作更为简单。

============================================

Writing multithreaded programs in Java, with its built-in support for threads, is fairly straightforward. However, multithreading presents a whole set of new challenges to the programmer that, if not correctly addressed, can lead to unexpected behavior and subtle, hard-to-find errors. In this article, we address one of those challenges: how to interrupt a running thread.

Background
Interrupting a thread means stopping what it is doing before it has completed its task, effectively aborting its current operation. Whether the thread dies, waits for new tasks, or goes on to the next step depends on the application.

Although it may seem simple at first, you must take some precautions in order to achieve the desired result. There are some caveats you must be aware of as well.

First of all, forget the  Thread.stop  method. Although it indeed stops a running thread, the method is unsafe and was  deprecated , which means it may not be available in future versions of the Java.

Another method that can be confusing for the unadvised is  Thread.interrupt . Despite what its name may imply, the method does not interrupt a running thread (more on this later), as  Listing A  demonstrates. It creates a thread and tries to stop it using  Thread.interrupt . The calls to  Thread.sleep()  give plenty of time for the thread initialization and termination. The thread itself does not do anything useful.

If you run the code in Listing A, you should see something like this on your console:
Starting thread...
Thread is running...
Thread is running...
Thread is running...
Interrupting thread...
Thread is running...
Thread is running...
Thread is running...
Stopping application...

Even after  Thread.interrupt()  is called, the thread continues to run for a while.

Really interrupting a thread
The best, recommended way to interrupt a thread is to use a shared variable to signal that it must stop what it is doing. The thread must check the variable periodically, especially during lengthy operations, and terminate its task in an orderly manner.  Listing B  demonstrates this technique.

Running the code in Listing B will generate output like this (notice how the thread exits in an orderly fashion):
Starting thread...
Thread is running...
Thread is running...
Thread is running...
Asking thread to stop...
Thread exiting under request...
Stopping application...

Although this method requires some coding, it is not difficult to implement and give the thread the opportunity to do any cleanup needed, which is an absolute requirement for any multithreaded application. Just be sure to declare the shared variable as  volatile  or enclose any access to it into  synchronized  blocks/methods.

So far, so good! But what happens if the thread is blocked waiting for some event? Of course, if the thread is blocked, it can't check the shared variable and can't stop. There are plenty of situations when that may occur, such as calling  Object.wait() ServerSocket.accept() , and  DatagramSocket.receive() , to name a few.

They all can block the thread forever. Even if a timeout is employed, it may not be feasible or desirable to wait until the timeout expires, so a mechanism to prematurely exit the blocked state must be used.

Unfortunately there is no such mechanism that works for all cases, but the particular technique to use depends on each situation. In the following sections, I'll give solutions for the most common cases.

Interrupting a thread with Thread.interrupt()
As demonstrated in Listing A, the method  Thread.interrupt()  does not interrupt a running thread. What the method actually does is to throw an interrupt if the thread is blocked, so that it exits the blocked state. More precisely, if the thread is blocked at one of the methods  Object.wait Thread.join , or  Thread.sleep , it receives an  InterruptedException , thus terminating the blocking method prematurely.

So, if a thread blocks in one of the aforementioned methods, the correct way to stop it is to set the shared variable and then call the  interrupt()  method on it (notice that it is important to set the variable first). If the thread is not blocked, calling  interrupt()  will not hurt; otherwise, the thread will get an exception (the thread must be prepared to handle this condition) and escape the blocked state. In either case, eventually the thread will test the shared variable and stop.  Listing C  is a simple example that demonstrates this technique.

As soon as  Thread.interrupt()  is called in Listing C, the thread gets an exception so that it escapes the blocked state and determines that it should stop. Running this code produces output like this:
Starting thread...
Thread running...
Thread running...
Thread running...
Asking thread to stop...
Thread interrupted...
Thread exiting under request...
Stopping application...

Interrupting an I/O operation
But what happens if the thread is blocked on an I/O operation? I/O can block a thread for a considerable amount of time, particularly if network communication is involved. For example, a server may be waiting for a request, or a network application may be waiting for an answer from a remote host.

If you're using channels, available with the new I/O API introduced in Java 1.4, the blocked thread will get a  ClosedByInterruptException  exception. If that is the case, the logic is the same as that used in the third example—only the exception is different.

But you might be using the traditional I/O available since Java 1.0, since the new I/O is so recent and requires more work. In this case,  Thread.interrupt()  doesn't help, since the thread will not exit the blocked state.  Listing D  demonstrates that behavior. Although the  interrupt()  method is called, the thread does not exit the blocked state.

Fortunately, the Java Platform provides a solution for that case by calling the  close()  method of the socket the thread is blocked in. In this case, if the thread is blocked in an I/O operation, the thread will get a  SocketException  exception, much like the  interrupt()  method causes an  InterruptedException  to be thrown.

The only caveat is that a reference to the socket must be available so that its  close()  method can be called. That means the socket object must also be shared. Listing E  demonstrates this case. The logic is the same as in the examples presented so far.

And here's the sample output you can expect from running Listing E:
Starting thread...
Waiting for connection...
Asking thread to stop...
accept() failed or interrupted...
Thread exiting under request...
Stopping application...

Multithreading is a powerful tool, but it presents its own set of challenges. One of these is how to interrupt a running thread. If properly implemented, these techniques make interrupting a thread no more difficult than using the built-in operations already provided by the Java Platform.
相关文章
|
4天前
|
安全 Java
深入理解 Java 多线程和并发工具类
【4月更文挑战第19天】本文探讨了Java多线程和并发工具类在实现高性能应用程序中的关键作用。通过继承`Thread`或实现`Runnable`创建线程,利用`Executors`管理线程池,以及使用`Semaphore`、`CountDownLatch`和`CyclicBarrier`进行线程同步。保证线程安全、实现线程协作和性能调优(如设置线程池大小、避免不必要同步)是重要环节。理解并恰当运用这些工具能提升程序效率和可靠性。
|
4天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
5天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
5天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
6天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
6天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
13 1
|
6天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
6 0
|
7天前
|
缓存 监控 Java
Java并发编程:线程池与任务调度
【4月更文挑战第16天】Java并发编程中,线程池和任务调度是核心概念,能提升系统性能和响应速度。线程池通过重用线程减少创建销毁开销,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。任务调度允许立即或延迟执行任务,具有灵活性。最佳实践包括合理配置线程池大小、避免过度使用线程、及时关闭线程池和处理异常。掌握这些能有效管理并发任务,避免性能瓶颈。
|
7天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
8天前
|
存储 缓存 Java
线程同步的艺术:探索 JAVA 主流锁的奥秘
本文介绍了 Java 中的锁机制,包括悲观锁与乐观锁的并发策略。悲观锁假设多线程环境下数据冲突频繁,访问前先加锁,如 `synchronized` 和 `ReentrantLock`。乐观锁则在访问资源前不加锁,通过版本号或 CAS 机制保证数据一致性,适用于冲突少的场景。锁的获取失败时,线程可以选择阻塞(如自旋锁、适应性自旋锁)或不阻塞(如无锁、偏向锁、轻量级锁、重量级锁)。此外,还讨论了公平锁与非公平锁,以及可重入锁与非可重入锁的特性。最后,提到了共享锁(读锁)和排他锁(写锁)的概念,适用于不同类型的并发访问需求。
38 2