Matlab 北方苍鹰算法优化极限学习机(NGO-ELM)分类预测

简介: Matlab 北方苍鹰算法优化极限学习机(NGO-ELM)分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着大数据时代的到来,数据分析和预测成为了各个行业中不可或缺的一部分。在金融、医疗、交通等领域,准确地预测未来的数据变化越来越重要。为了满足这一需求,各种机器学习算法被提出和应用于数据预测中。

极限学习机(Extreme Learning Machine,ELM)是一种新兴的机器学习算法,它以其快速的训练速度和良好的泛化能力而备受关注。ELM通过随机生成输入层到隐藏层的连接权重和偏置,然后通过最小二乘法求解输出层的权重,从而实现对数据的回归预测。

然而,传统的ELM算法在处理复杂问题时存在一些限制。为了解决这些问题,研究人员提出了各种改进的ELM算法。本文将介绍一种基于北方苍鹰优化(Northern Gannet Optimization,NGO)的ELM算法,即NGO-ELM。

NGO-ELM算法是一种基于自然界中鸟类觅食行为的优化算法。北方苍鹰是一种善于觅食的鸟类,它们通过观察和学习其他鸟类的行为来寻找食物。NGO-ELM算法模拟了北方苍鹰的觅食行为,通过不断调整隐藏层的权重和偏置来优化ELM算法的性能。

NGO-ELM算法的核心思想是通过迭代优化隐藏层的权重和偏置,使得ELM算法在训练数据集上的拟合效果更好。具体而言,NGO-ELM算法首先随机生成一组初始权重和偏置,然后通过计算每个样本的预测误差来评估当前权重和偏置的性能。接下来,NGO-ELM算法根据觅食行为的策略来调整权重和偏置,使得预测误差逐渐减小。最终,NGO-ELM算法得到一组最优的权重和偏置,从而实现对数据的准确预测。

与传统的ELM算法相比,NGO-ELM算法具有以下优势:

  1. 更快的训练速度:NGO-ELM算法通过随机生成初始权重和偏置,不需要像传统ELM算法那样通过迭代求解权重,从而大大提高了训练速度。
  2. 更好的泛化能力:NGO-ELM算法通过不断优化隐藏层的权重和偏置,可以更好地拟合训练数据集,从而提高了算法的泛化能力。
  3. 更高的预测准确率:NGO-ELM算法通过模拟北方苍鹰的觅食行为,可以找到更优的权重和偏置,从而实现对数据的准确预测。

在实际应用中,NGO-ELM算法已经被证明在数据回归预测中具有较好的性能。无论是金融市场的股票预测,还是医疗领域的疾病预测,NGO-ELM算法都能够提供准确的预测结果。

综上所述,基于北方苍鹰优化的极限学习机NGO-ELM算法是一种有效的数据回归预测方法。它通过模拟北方苍鹰的觅食行为,通过优化隐藏层的权重和偏置,实现对数据的准确预测。在未来的研究中,我们可以进一步探索NGO-ELM算法在其他领域的应用,并进一步改进算法的性能,以满足不断增长的数据分析和预测需求。

⛄ 部分代码

function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,parameter,TF,TYPE)[R,~] = size(P);[~,Q] = size(T);if nargin < 3    N = size(P,2);endif nargin < 5    TF = 'sig';endif nargin < 6    TYPE = 0;endif TYPE  == 1    T  = ind2vec(T);endtry    if length(parameter)==1        parameter=parameter*ones(R*Q+N,1);    end    IW=reshape(parameter(1:R*N),N,R);                 %输入层和隐含层的权值    B=reshape(parameter(R*N+1:end),N,1);            %隐含层的偏置catch    IW = rand(N,R) * 2 - 1;    B = rand(N,1);    warning('Problem using function. Assigning default values.');endBiasMatrix = repmat(B,1,Q);% 求解隐含层的输出值tempH = IW * P + BiasMatrix;switch TF    case 'sig'        H = 1 ./ (1 + exp(-tempH));    case 'sin'        H = sin(tempH);    case 'hardlim'        H = hardlim(tempH);end% 求解输出层的权值,通过求逆的方法,得到LW,得到训练好的模型结构。LW = pinv(H') * T';

⛄ 运行结果

⛄ 参考文献

[1]陈超洋,刘成伟,贺悝,等.一种改进北方苍鹰算法的配电网重构方法:202310414410[P][2023-09-12].

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合




相关文章
|
19天前
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
135 70
|
2月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
207 13
|
5月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
161 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
4月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
56 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
4月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
54 0
|
5月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
69 9
|
6月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
116 1
|
6月前
|
算法 5G Windows
OFDM系统中的信号检测算法分类和详解
参考文献 [1]周健, 张冬. MIMO-OFDM系统中的信号检测算法(I)[J]. 南京工程学院学报(自然科学版), 2010. [2]王华龙.MIMO-OFDM系统传统信号检测算法[J].科技创新与应用,2016(23):63.
112 4
|
6月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【8月更文挑战第2天】决策树算法以其直观性和解释性在机器学习领域中独具魅力,尤其擅长处理非线性关系。相较于复杂模型,决策树通过简单的分支逻辑实现数据分类,易于理解和应用。本示例通过Python的scikit-learn库演示了使用决策树对鸢尾花数据集进行分类的过程,并计算了预测准确性。虽然决策树优势明显,但也存在过拟合等问题。即便如此,无论是初学者还是专家都能借助决策树的力量提升数据分析能力。
65 4
|
6月前
|
存储 算法 安全
密码算法的分类
【8月更文挑战第23天】
282 0