为什么使用图进行关联运算比表Join更具吸引力?

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 Tair(兼容Redis),内存型 2GB
简介: 为什么使用图进行关联运算比表Join更具吸引力?

GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!! 欢迎给我们 Star 哦! GitHub👉https://github.com/TuGraph-family/tugraph-analytics
更多精彩内容,关注我们的博客 https://geaflow.github.io/

作者:TuGraph

关系模型并不适合处理关系

关系模型被广泛应用于数据库和数仓等数据处理系统的数据建模,然而名称里带有关系一词的模型却并不适合处理关系

在关系模型所用的表结构建模下,关系的运算通过Join运算来处理。但在实际使用中,特别是在流式更新的数据中,这种方式存在诸多痛点。

痛点一:关系运算成本高

表模型的重点在于多条记录统一描述为表,但本身缺乏关系描述能力,只能通过Join运算来完成关系的计算

无论是在批或流的计算系统中,Join操作都涉及大量shuffle和计算开销。同时,Join产生的中间结果由于关联会放大多份,造成数据量指数级膨胀和冗余,存储消耗大。

在下图的实验中,我们模拟了依次执行一跳、两跳和三跳关系运算的场景。足以见得,越是复杂的多跳关系计算,关系模型中Join的性能表现越差。在总时间对比中,利用图的Match计算能够节约超过90%的耗时。
vs_join_total_time_cn.jpg

图1

痛点二:数据冗余,时效性低

在很多数仓分析的场景中,为了提高数据查询性能,往往将多张表提前物化成一张大宽表。

大宽表虽然可以加速查询性能,然而其数据膨胀和冗余非常严重。由于表与表之间一对多的关联关系,导致一张表的数据通过关联会放大多份,造成数据量指数级膨胀和冗余。

而且宽表一经生成就难以更改,否则需要重新生成新宽表,费时费力,不够灵活。

此时利用图模型建模,可以轻易解决这个问题。 图是对关系的一种天然描述,以点代表实体,以边代表关系。

比如在人际关系图里面,每一个人可以用一个点来表示,人和人之间的关系通过边来表示,人与人之间可以存在各种各样的复杂关系,这些关系都可以通过不同的边来表示。

显然,构造图的过程本质上是对事物之间关系的提炼,在数据存储层面实质是对关系做了物化,以获取更好的关联计算性能

相比宽表的关系物化方式,由于图结构本身的点边聚合性,构图表现得十分节约。 下图是GeaFlow中高性能构图的表现,可见构图操作本身极为迅速,且由于图可以分片的特性,具有十分良好的可扩展性。

insert_throuput_cn.jpg

图2

在图一的实验中也可以发现,实质上我们用少量的插入图(青色的insert to graph部分开销)耗时,换取了图建模方式对之后关联查询的加速效果。

痛点三:复杂关系查询难以描述

使用表建模的分析系统只支持SQL join一种方式进行关系分析,这在复杂场景中能力十分局限。 比如查询一个人4度以内所有好友,或者查询最短路径等,这些复杂关联关系通过SQL表的join方式很难描述。

GeaFlow提供融合GQL和SQL样式的查询语言,这是一种图表一体的数据分析语言,继承自标准SQL+ISO/GQL,可以方便进行图表分析。

code_style.jpg

图3

在融合DSL中,图计算的结果与表查询等价,都可以像表数据一样做关系运算处理。这意味着图3中GQL和SQL两种描述都可以达到类似的效果,极大灵活了用户的查询表达能力。

GeaFlow DSL引擎层还将支持SQL中的Join自动转化为GQL执行,用户可以自由混用SQL和GQL样式查询,同时做图匹配、图算法和表查询。

流图计算引擎TuGraph-Analytics

GeaFlow(品牌名TuGraph-Analytics)是蚂蚁集团开源的分布式流式图计算引擎。在蚂蚁内部,目前已广泛应用于数仓加速、金融风控、知识图谱以及社交网络等大量场景。

TuGraph-Analytics已经于2023年6月正式对外开源,开放其以图为数据模型的流批一体计算核心能力。相比传统的流式计算引擎,如Flink、Storm这些以表为模型的实时处理系统,GeaFlow以自研图存储为底座,流批一体计算引擎为矛,融合GQL/SQL DSL语言为旗帜,在复杂多度的关系运算上具备极大的优势。

query_throuput_cn.jpg

图4

图4展示了GeaFlow使用Match算子在图上进行多跳关联查询,相比Flink的Join算子带来的实时吞吐提升。在复杂多跳场景下,现有的流式计算引擎已经基本不能胜任实时处理。而图模型的存在,则突破这一限制,扩展了实时流计算的应用场景。


GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!!

欢迎给我们 Star 哦!

Welcome to give us a Star!

GitHub👉https://github.com/TuGraph-family/tugraph-analytics

更多精彩内容,关注我们的博客 https://geaflow.github.io/

相关文章
|
6月前
|
移动开发 vr&ar
技术好文共享:编程语言中,差、交、并、自然连接、选择、投影、笛卡尔积分别都是什么运算
技术好文共享:编程语言中,差、交、并、自然连接、选择、投影、笛卡尔积分别都是什么运算
|
7月前
|
达摩院 算法 决策智能
解决背包问题:组合优化的应用与建模方法
组合优化是数学优化的一支,专注于从有限集合中选取元素的最优化问题。它涉及将一组对象组合在一起,以满足特定条件并优化某个目标函数,即在所有可能的组合中找到最有利的一个。 本文将以一个简化的背包问题为例,来讲解采用数学规划的方法来解决背包这个组合优化问题。
|
7月前
|
数据可视化 数据建模
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系
Matlab:如何利用层次分析法(升级版)计算具有多重指标的判断矩阵的一致性检验和权重
Matlab:如何利用层次分析法(升级版)计算具有多重指标的判断矩阵的一致性检验和权重
370 0
|
7月前
静态时序分析:工艺库的特征化条件和工作条件
静态时序分析:工艺库的特征化条件和工作条件
57 0
|
7月前
|
算法 搜索推荐 数据挖掘
图计算中的图算法有哪些常见的类型?请举例说明每种类型的算法。
图计算中的图算法有哪些常见的类型?请举例说明每种类型的算法。
154 0
|
存储 数据可视化 数据挖掘
知识点丨重测序数据进行kinship亲缘关系分析、构建IBS矩阵的方法与介绍
知识点丨重测序数据进行kinship亲缘关系分析、构建IBS矩阵的方法与介绍
知识点丨重测序数据进行kinship亲缘关系分析、构建IBS矩阵的方法与介绍
运筹规划时复杂条件转换(最大M方式)
运筹规划时复杂条件转换(最大M方式)
71 0
|
vr&ar
【计算理论】计算理论总结 ( 上下文无关文法 | 乔姆斯基范式 | 乔姆斯基范式转化步骤 | 示例 ) ★★
【计算理论】计算理论总结 ( 上下文无关文法 | 乔姆斯基范式 | 乔姆斯基范式转化步骤 | 示例 ) ★★
629 0
|
机器学习/深度学习 移动开发
【组合数学】排列组合 ( 集合组合、一一对应模型分析示例 )
【组合数学】排列组合 ( 集合组合、一一对应模型分析示例 )
204 0