JVM GC垃圾回收

简介: JVM GC垃圾回收

一、GC垃圾回收算法

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/07A156E7F69C45FC9DA4D96300C7EBDB/95317

标记-清除算法

算法分为“标记”和“清除”阶段:标记存活的对象, 统一回收所有未被标记的对象(一般选择这种);也可以反过来,标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象 。它是最基础的收集算法,比较简单,但是会带来两个明显的问题:

  1. 效率问题 (如果需要标记的对象太多,效率不高)
  2. 空间问题(标记清除后会产生大量不连续的碎片)

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/8776D98D7914406FBA66837258CBDEF5/94592

标记-整理算法

根据老年代的特点特出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/9327E5C7D8A94F9086CDDB67A1EA57CC/94590

复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/C3312F65B0364828BA6A03DF9D3B60A8/95776

分代收集算法

当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

比如在新生代中,每次收集都会有大量对象(近99%)死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。注意,“标记-清除”或“标记-整理”算法会比复制算法慢10倍以上。

二、GC垃圾回收器实现

常见的GC回收器的种类:

(1)serial回收器:在GC回收的时候停掉工作线程,他是一个串行的回收器;

(2)parallel回收器:在GC回收的时候停掉工作线程,这种GC回收器是并发执行的;

(3)CMS,他的全程是concurrent mark sweep,他的主要优势是在GC回收的时候不需要全程stop the world;

(4)G1:这个是从JDK7后推出的新的GC,适应大型并发场景;

image-20230909234715677

衡量GC的指标主要是吞吐量、暂停时间。

  1. 吞吐量:是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间+垃圾收集时间)。比如:虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
  2. 暂停时间:是指一个时间段内应用程序线程暂停,让GC线程执行的状态。例如,GC期间100毫秒的暂停时间意味着在这100毫秒期间内没有应用程序线程是活动的。
  3. 回收效率:是指一次GC能真正回收的垃圾对象的数量,以及能够回收的垃圾对象占实际垃圾对象的比例。

Serial收集器(-XX:+UseSerialGC -XX:+UseSerialOldGC)

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。

新生代采用复制算法,老年代采用标记-整理算法。

0

虚拟机的设计者们当然知道Stop The World带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。

Parallel收集器(-XX:+UseParallelGC(年轻代),-XX:+UseParallelOldGC(老年代))

Parallel收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和Serial收集器类似。默认的收集线程数跟cpu核数相同,当然也可以用参数(-XX:ParallelGCThreads)指定收集线程数,但是一般不推荐修改。

Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。 Parallel Scavenge收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。

新生代采用复制算法,老年代采用标记-整理算法。

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/03C4D01AD9744284A399279A319DC5E6/92873

CMS收集器(-XX:+UseConcMarkSweepGC(old))

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,它是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  1. 初始标记: 暂停所有的其他线程(STW),并记录下gc roots直接能引用的对象,速度很快。
  2. 并发标记: 并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程, 这个过程耗时较长但是不需要停顿用户线程, 可以与垃圾收集线程一起并发运行。因为用户程序继续运行,可能会有导致已经标记过的对象状态发生改变。
  3. 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录(主要是处理漏标问题),这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短。
  4. 并发清理: 开启用户线程,同时GC线程开始对未标记的区域做清扫。这个阶段如果有新增对象会被标记为黑色不做任何处理。

0

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面几个明显的缺点:

  1. 对CPU资源敏感(会和服务抢资源);
  2. 无法处理浮动垃圾(在并发标记和并发清理阶段又产生垃圾,这种浮动垃圾只能等到下一次gc再清理了);
  3. 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。

G1收集器(-XX:+UseG1GC)

G1回收器会将区域划分为region,每个region可以是新生代也可以是老年代,通过控制对region的回收,做到对垃圾回收导致的STW可控。垃圾回收的阶段前3个阶段和CMS一致,只是最后一个节点需要通过混合清除来回收新生代和老年代所有的对象:

  1. 初始标记;标记GC root对象,需要暂停所有用户线程,该过程会引发STW;
  2. 并发标记;标记GC root可达的对象。
  3. 最终标记;标记在并发标记阶段产生的需回收对象。
  4. 筛选回收:对各个Region的回收成本和价值进行排序,根据用心要求的GC停顿时间来选择需要GC的Region。

0E8450B5-984A-45DF-BEE6-6ABE93D82302

G1的优缺点分别为:

  1. 优点:(1)并发处理效率高;(2)整体停顿STW的时间可控;(3)新生掉和老年代都分为逻辑上的region,通过GC的复制算法解决内存碎片的问题;
  2. 缺点:引入了Remembered Set来保存内存引用信息,所以增加了内存占用,所以G1一般在大内存的服务端环境使用,起步内存大小为8G。

GC垃圾回收器对比和总结

  1. 选择GC主要考虑的是使用场景,一般嵌入式、内存较小的选择Serial收集器;
  2. 对于需求吞吐量大的常见可以选择Parallel收集器;
  3. 对于需求时延短的场景可以选择CMS收集器;
  4. G1回收器整体是平衡了降低时延和增大吞吐量的要求,适用于海量并发场景,对系统资源也有较高的要求;

三、GC垃圾回收器的常见机制

大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。JVM参数 -XX:PretenureSizeThreshold 可以设置大对象的大小,如果对象超过设置大小会直接进入老年代,不会进入年轻代,这个参数只在 Serial 和ParNew两个收集器下有效。

比如设置JVM参数:-XX:PretenureSizeThreshold=1000000 (单位是字节) -XX:+UseSerialGC ,再执行下上面的第一个程序会发现大对象直接进了老年代。这样做的原因是为了避免为大对象分配内存时的复制操作而降低效率。

长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。

如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1。对象在 Survivor 中每熬过一次 MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁,CMS收集器默认6岁,不同的垃圾收集器会略微有点不同),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

批量对象动态年龄判断

当前放对象的Survivor区域里(其中一块区域,放对象的那块s区),一批对象的总大小大于这块Survivor区域内存大小的50%(-XX:TargetSurvivorRatio可以指定),那么此时大于等于这批对象年龄最大值的对象,就可以直接进入老年代了,例如Survivor区域里现在有一批对象,年龄1+年龄2+年龄n的多个年龄对象总和超过了Survivor区域的50%,此时就会把年龄n(含)以上的对象都放入老年代。这个规则其实是希望那些可能是长期存活的对象,尽早进入老年代。

批量对象动态年龄判断机制一般是在minor gc之后触发的。

老年代空间分配担保机制

年轻代每次minor gc之前JVM都会计算下老年代剩余可用空间,如果这个可用空间小于年轻代里现有的所有对象大小之和(包括垃圾对象),就会看一个“-XX:-HandlePromotionFailure”(jdk1.8默认就设置了)的参数是否设置了,如果有这个参数,就会看看老年代的可用内存大小,是否大于之前每一次minor gc后进入老年代的对象的平均大小。

如果上一步结果是小于或者之前说的参数没有设置,那么就会触发一次Full gc,对老年代和年轻代一起回收一次垃圾,如果回收完还是没有足够空间存放新的对象就会发生"OOM",当然,如果minor gc之后剩余存活的需要挪动到老年代的对象大小还是大于老年代可用空间,那么也会触发full gc,full gc完之后如果还是没有空间放minor gc之后的存活对象,则也会发生“OOM”。

老年代空间分配担保机制判断是在minor gc之前触发的。

目录
相关文章
|
5月前
|
Arthas 存储 算法
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
464 55
|
10月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
233 27
|
7月前
|
存储 算法 Java
G1原理—5.G1垃圾回收过程之Mixed GC
本文介绍了G1的Mixed GC垃圾回收过程,包括并发标记算法详解、三色标记法如何解决错标漏标问题、SATB如何解决错标漏标问题、Mixed GC的过程、选择CollectSet的算法
G1原理—5.G1垃圾回收过程之Mixed GC
|
5月前
|
缓存 算法 Java
JVM深入原理(八)(一):垃圾回收
弱引用-作用:JVM中使用WeakReference对象来实现软引用,一般在ThreadLocal中,当进行垃圾回收时,被弱引用对象引用的对象就直接被回收.软引用-作用:JVM中使用SoftReference对象来实现软引用,一般在缓存中使用,当程序内存不足时,被引用的对象就会被回收.强引用-作用:可达性算法描述的根对象引用普通对象的引用,指的就是强引用,只要有这层关系存在,被引用的对象就会不被垃圾回收。引用计数法-缺点:如果两个对象循环引用,而又没有其他的对象来引用它们,这样就造成垃圾堆积。
149 0
|
5月前
|
算法 Java 对象存储
JVM深入原理(八)(二):垃圾回收
Java垃圾回收过程会通过单独的GC线程来完成,但是不管使用哪一种GC算法,都会有部分阶段需要停止所有的用户线程。这个过程被称之为StopTheWorld简称STW,如果STW时间过长则会影响用户的使用。一般来说,堆内存越大,最大STW就越长,想减少最大STW,就会减少吞吐量,不同的GC算法适用于不同的场景。分代回收算法将整个堆中的区域划分为新生代和老年代。--超过新生代大小的大对象会直接晋升到老年代。
102 0
|
7月前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
7月前
|
存储 算法 Java
G1原理—6.G1垃圾回收过程之Full GC
本文详细探讨了G1垃圾回收器对Full GC(FGC)的优化处理,涵盖FGC的前置处理、整体流程及并行化改进。重点分析了传统FGC串行化的局限性以及G1通过Region分区和RSet机制实现并行标记的优势,包括任务窃取提升效率、跨分区压缩以生成空闲Region等技术细节。此外,文章还介绍了G1的新特性——字符串去重优化,通过判断char数组一致性减少重复字符串占用内存,从而提升内存使用效率。总结部分全面回顾了G1在FGC中的各项优化措施及其带来的性能改善。
G1原理—6.G1垃圾回收过程之Full GC
|
7月前
|
存储 算法 Java
G1原理—4.G1垃圾回收的过程之Young GC
本文详细解析了G1垃圾回收器中YGC(Young Generation Collection)的完整流程,包括并行与串行处理阶段。内容涵盖YGC相关参数设置、YGC与Mixed GC及FGC的关系、新生代垃圾回收的具体步骤(如标记存活对象、复制到Survivor区、动态调整Region数量等),以及并行阶段的多线程操作和串行阶段的关键任务(如处理软引用、整理卡表、重构RSet)。
G1原理—4.G1垃圾回收的过程之Young GC
|
11月前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
230 28
|
10月前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)