嵌入式Linux MIPI接口LCD调试-关于DRM显示与应用调试的干货浓缩

简介: 嵌入式Linux MIPI接口LCD调试-关于DRM显示与应用调试的干货浓缩

经过一段时间自己学习和理解,个人对于MIPI LCD接口的调试有了自己的一点心得,当然也收获了Linux DRM显示框架及调试的一些心得,DRM真的很难很难,本文也无法顾及所有的细节,之前也发了一些DRM相关的文章:


linux中基于DRM的图形显示系统概述


libdrm-modetest原理及图显系统验证方法


以下的这些概念和操作都是本人在实践的过程中觉得对调试有用,所以就记下来了,接下来我们来简单的了解一下:

1、有关DRM的一些基础概念

640.png

640.png

1.1、Connectors

就是屏幕,比如主控芯片通过HDMI、MIPI DSI,分别接2个屏幕显示,就会有2个对应的Connectors ID;

1.2、CRTCs

表示VOP,一个屏幕一般对应一个crtc;

1.3、Planes

就是图层,比如视频层在plane2,UI在plane1,视频在UI上面;

2、通过modetest查看系统DRM的情况

例如在RV1109的开发板端执行modetest,我们可以看到以下输出信息:

[root@RV1126_RV1109:/oem]# modetest
Encoders:
id   crtc  type  possible crtcs possible clones
55    53   DSI   0x00000001   0x00000000
Connectors:
id   encoder status     name      size (mm)    modes  encoders
56    55   connected    DSI-1      154x86      1    55
modes:
   name refresh (Hz) hdisp hss hse htot vdisp vss vse vtot)
1024x600 54 1024 1240 1310 1470 600 612 622 645 51200 flags: nhsync, nvsync;
type: preferred, driver
props:
    1 EDID:
       flags: immutable blob
       blobs:
       value:
    2 DPMS:
       flags: enum
       enums: On=0 Standby=1 Suspend=2 Off=3
       value: 0
    5 link-status:
       flags: enum
       enums: Good=0 Bad=1
       value: 0
    6 non-desktop:
       flags: immutable range
       values: 0 1
       value: 0
    43 brightness:
       flags: range
       values: 0 100
       value: 50
    44 contrast:
       flags: range
       values: 0 100
       value: 50
    47 saturation:
       flags: range
       values: 0 100
       value: 50
    48 hue:
       flags: range
       values: 0 100
       value: 50
CRTCs:
id   fb   pos   size
53    57   (0,0)  (1024x600)
1024x600 54 1024 1240 1310 1470 600 612 622 645 51200 flags: nhsync, nvsync;
type: preferred, driver
props:
    38 left margin:
       flags: range
       values: 0 100
       value: 100
    39 right margin:
       flags: range
       values: 0 100
       value: 100
    40 top margin:
       flags: range
       values: 0 100
       value: 100
    41 bottom margin:
       flags: range
       values: 0 100
       value: 100
    51 FEATURE:
       flags: immutable bitmask
       values: afbdc=0x1
       value: 0
       Planes:
id   crtc  fb   CRTC x,y    x,y   gamma size   possible crtcs
52    53    57    0,0       0,0   0        0x00000001
formats: XR24 AR24 XB24 AB24 RG24 BG24 RG16 BG16
props:
    8 type:
       flags: immutable enum
       enums: Overlay=0 Primary=1 Cursor=2
       value: 1
    50 FEATURE:
       flags: immutable bitmask
       values: scale=0x1 alpha=0x2 hdr2sdr=0x4 sdr2hdr=0x8 afbdc=0x10
       value: 2
54    0    0    0,0       0,0   0        0x00000001
formats: XR24 AR24 XB24 AB24 RG24 BG24 RG16 BG16 NV12 NV16 NV24
props:
    8 type:
       flags: immutable enum
       enums: Overlay=0 Primary=1 Cursor=2
       value: 0
    50 FEATURE:
       flags: immutable bitmask
       values: scale=0x1 alpha=0x2 hdr2sdr=0x4 sdr2hdr=0x8 afbdc=0x10
       value: 3
Frame buffers:
id   size  pitch

从以上信息,我们能够了解到:

2.1、Connectors

观察以上信息,我们可以看到Connectors有1个,代表可以接1个屏幕输出,ID是56。该显示输出的最大分辨率是1024x600,刷新频率54hz;

640.png

2.2、CRTCs

观察以上信息,我们可以看到CRTCs有1个,ID是53;

640.png

2.3、Planes

观察以上信息,我们可以看到Planes有2个,即代表有2个图层,ID分别是52、54。plane 53当前type值是1,代表是Primary层;plane 55当前type值是0,代表是Overlay层;

2.3.1、Primary层

640.png

2.3.2、Overlay层

640.png

3、通过modetest指令测试屏幕输出

我们可以根据以上modetest探测出来的信息,然后发送以下指令让色块显示到LCD显示屏上,在ARM端输入以下命令:

modetest -s 56@53:1024x600@RG24

其中:

  • 56,对应Connectors ID;
  • 53,对应CRTCs ID;
  • 1024x600,输出最大分辨率;
  • RG24,代表RGB888,每个像素点24bit,R/G/B各8bit;


执行以后,我们可以看到屏幕上的显示效果:

640.png

4、如何用/sys/kernel/debug/dri进行监控

4.1、查看/sys/kernel/debug/dri下的节点
ls /sys/kernel/debug/dri/0/

可以看到:

640.png

4.2、获取dri的状态
cat /sys/kernel/debug/dri/0/state

可以看到:

640.png

4.3、查看dri当前的显示状态
cat /sys/kernel/debug/dri/0/summary

可以看到:

640.png

从以上信息可以看出:


VOP的状态是ACTIVE,表示正在运行中,如果是DISABLED,表示VOP没在运行。


Connector:DSI 表示对应屏幕接口的名称。


Display mode表示的是当前显示的分辨率和频率为,即分辨率为1024*600,频率为54fps。

4.4、查看当前的显示时钟
cat /sys/kernel/debug/clk/clk_summary | grep vop

可以看到:

640.png

  • 关于dclk即pixel clock, 像素时钟, 该时钟由具体的显示timing决定, 如果dclk不正确, 可能导致fps不对或直接不显示.edp, mipi, lvds等显示接口对应dclk的容忍性较好, 有些偏差也不影响正常显示.但hdmi, dp等高清显示接口,是有严格要求的, 这类显示接口的频率要给的很精准.
  • DCLK频率
    指的是像素时钟,跟数据传输有关,液晶面板分辨率越高,像素时钟信号的频率也越高。在一行内,像素时钟的个数与液晶面板一行内所具有的像素数量相等。例如,对于1024×768的液晶面板,一行有1024个像素,则在一行中(对应于有效视频区间)像素时钟的个数也是1024个。
  • aclk_vop:如果该时钟频率太低, 可能会导致显示出现抖动, 另外如果aclk 没有使能的话, 访问vop的寄存器也可能引发总线挂死
  • hclk_vop:如果该时钟未使能, 不能访问vop的寄存器, 一但访问vop寄存器, 会造成总线挂死.

5、如何用/sys/类/drm进行监控

5.1、查看/sys/drm/目录下的节点
ls /sys/class/drm

可以看到:

640.png

5.2、获取DRM连接器的名称和当前的状态

ARM终端输入:

for p in /sys/class/drm/*/status; do con=${p%/status}; echo -n "${con#*/card?-}:"; cat $p; done

可以看到:

640.png

当前还有其它的节点可以访问。

6、基于RK平台MIPI DSI设备调试实战

6.1、查看显示驱动是否已经正常加载

以RK平台为例,之前一直调试的是RV1126_RV1109,RK在底层实现了自己的一套DRM显示框架:

640.png

MIPI DRM 驱动的加载存在依赖关系,所以可能会多次因为驱动资源暂时获取不到而返回 -517 ,但是只要配置正确,待相关组件驱动能够完整获取到资源后,最终就会 bound 成功,如果没有看到如下:

[   0.889511] rockchip-drm display-subsystem: bound ffb00000.vop (ops0xb093e180)
[   0.889613] rockchip-drm display-subsystem: bound ffb30000.dsi (ops0xb09448ac)

则绑定失败,通讯异常。


注意:如果你确定软件上已经没问题了,那么多半是硬件连接的问题,因为 MIPI 排线比较脆弱,很容易导致接触不良。

6.2、查看显示信息

查看命令如下:

cat /sys/kernel/debug/dri/0/summary

640.png

6.3、查看当前连接状态

查看命令:

cat /sys/class/drm/card0-DSI-1/status

640.png

6.4、查看当前使能状态
cat /sys/class/drm/card0-DSI-1/enabled

640.png

6.5、查看当前支持的显示模式

查看命令:

cat /sys/class/drm/card0-DSI-1/modes

640.png

往期精彩

Linux MIPI DSI LCD设备驱动开发调试细节学习笔记(一)


Linux MIPI DSI驱动调试笔记-设备树DCS格式序列之配置LCD初始化代码(二)


Linux MIPI DSI驱动调试笔记-LCD时序参数配置(三)


杨工本周直播PPT分享<<表驱动法在嵌入式产品开发中的应用>>


新产品立项了,作为嵌入式软件工程师该如何来开展设计工作?(个人经验分享)

目录
相关文章
|
23天前
|
机器学习/深度学习 安全 Linux
Linux 主要应用领域的归纳
服务器领域 Linux在服务器领域的应用是其最为广泛和成熟的领域之一。由于其开源、稳定、高效和安全的特性,Linux成为许多企业服务器的首选操作系统。 Web服务器:Linux是Web服务器的理想选择,因为它支持Apache、Nginx等流行的Web服务器软件,这些软件在Linux上运行稳定且性能卓越。Linux服务器可以高效地处理大量并发请求,提供快速、可靠的Web服务。 数据库服务器:Linux也广泛用于数据库服务器,如MySQL、PostgreSQL和Oracle等数据库管理系统在Linux上运行良好。Linux的稳定性和安全性使得它成为存储和管理敏感数据的理想平台。 邮件服务器:Lin
64 5
|
2月前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
137 15
|
3月前
|
存储 NoSQL Linux
linux之core文件如何查看和调试
通过设置和生成 core 文件,可以在程序崩溃时获取详细的调试信息。结合 GDB 等调试工具,可以深入分析 core 文件,找到程序崩溃的具体原因,并进行相应的修复。掌握这些调试技巧,对于提高程序的稳定性和可靠性具有重要意义。
675 6
|
3月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
137 13
|
3月前
|
运维 监控 Linux
BPF及Linux性能调试探索初探
BPF技术从最初的网络数据包过滤发展为强大的系统性能优化工具,无需修改内核代码即可实现实时监控、动态调整和精确分析。本文深入探讨BPF在Linux性能调试中的应用,介绍bpftune和BPF-tools等工具,并通过具体案例展示其优化效果。
130 14
|
4月前
|
缓存 NoSQL Linux
Linux调试
本文介绍了Linux调试、性能分析和追踪的培训资料,涵盖调试、性能分析和追踪的基础知识及常用工具。
338 6
Linux调试
|
4月前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
72 5
|
4月前
|
存储 安全 关系型数据库
Linux系统在服务器领域的应用与优势###
本文深入探讨了Linux操作系统在服务器领域的广泛应用及其显著优势。通过分析其开源性、安全性、稳定性和高效性,揭示了为何Linux成为众多企业和开发者的首选服务器操作系统。文章还列举了Linux在服务器管理、性能优化和社区支持等方面的具体优势,为读者提供了全面而深入的理解。 ###
|
6月前
|
Linux 程序员 编译器
Linux内核驱动程序接口 【ChatGPT】
Linux内核驱动程序接口 【ChatGPT】
|
7月前
|
Unix Linux Ruby
在windows和linux上高效快捷地发布Dash应用
在windows和linux上高效快捷地发布Dash应用
306 4

热门文章

最新文章