如何设计一个高并发系统?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 如何设计一个高并发系统?

1 问题分析:

说实话,如果面试官问你这个题目,那么你必须要使出全身吃奶劲了。为啥?因为你没看到现在很多公司招聘的 JD 里都是说啥,有高并发就经验者优先。


如果你确实有真才实学,在互联网公司里干过高并发系统,那你确实拿 offer 基本如探囊取物,没啥问题。面试官也绝对不会这样来问你,否则他就是蠢。


假设你在某知名电商公司干过高并发系统,用户上亿,一天流量几十亿,高峰期并发量上万,甚至是十万。那么人家一定会仔细盘问你的系统架构,你们系统啥架构?怎么部署的?部署了多少台机器?缓存咋用的?MQ 咋用的?数据库咋用的?就是深挖你到底是如何扛住高并发的。


因为真正干过高并发的人一定知道,脱离了业务的系统架构都是在纸上谈兵,真正在复杂业务场景而且还高并发的时候,那系统架构一定不是那么简单的,用个 redis,用 mq 就能搞定?当然不是,真实的系统架构搭配上业务之后,会比这种简单的所谓“高并发架构”要复杂很多倍。


如果有面试官问你个问题说,如何设计一个高并发系统?那么不好意思,一定是因为你实际上没干过高并发系统。面试官看你简历就没啥出彩的,感觉就不咋地,所以就会问问你,如何设计一个高并发系统?其实说白了本质就是看看你有没有自己研究过,有没有一定的知识积累。


最好的当然是招聘个真正干过高并发的哥儿们咯,但是这种哥儿们人数稀缺,不好招。所以可能次一点的就是招一个自己研究过的哥儿们,总比招一个啥也不会的哥儿们好吧!


所以这个时候你必须得做一把个人秀了,秀出你所有关于高并发的知识!


2 面试题回答:

其实所谓的高并发,如果你要理解这个问题呢,其实就得从高并发的根源出发,为啥会有高并发?为啥高并发就很牛逼?


我说的浅显一点,很简单,就是因为刚开始系统都是连接数据库的,但是要知道数据库支撑到每秒并发两三千的时候,基本就快完了。所以才有说,很多公司,刚开始干的时候,技术比较 low,结果业务发展太快,有的时候系统扛不住压力就挂了。


当然会挂了,凭什么不挂?你数据库如果瞬间承载每秒 5000/8000,甚至上万的并发,一定会宕机,因为比如 mysql 就压根儿扛不住这么高的并发量。


所以为啥高并发牛逼?就是因为现在用互联网的人越来越多,很多 app、网站、系统承载的都是高并发请求,可能高峰期每秒并发量几千,很正常的。如果是什么双十一之类的,每秒并发几万几十万都有可能。


那么如此之高的并发量,加上原本就如此之复杂的业务,咋玩儿?真正厉害的,一定是在复杂业务系统里玩儿过高并发架构的人,但是你没有,那么我给你说一下你该怎么回答这个问题:


可以分为以下 6 点:


系统拆分

缓存

MQ

分库分表

读写分离

ElasticSearch


bdf89420ab02615f4fc9ed7164f8484e.png

系统拆分

将一个系统拆分为多个子系统,用 dubbo 来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,不也可以扛高并发么。


缓存

缓存,必须得用缓存。大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家 redis 轻轻松松单机几万的并发。所以你可以考虑考虑你的项目里,那些承载主要请求的读场景,怎么用缓存来抗高并发。


MQ

MQ,必须得用 MQ。可能你还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,疯了。那高并发绝对搞挂你的系统,你要是用 redis 来承载写那肯定不行,人家是缓存,数据随时就被 LRU 了,数据格式还无比简单,没有事务支持。所以该用 mysql 还得用 mysql 啊。那你咋办?用 MQ 吧,大量的写请求灌入 MQ 里,排队慢慢玩儿,后边系统消费后慢慢写,控制在 mysql 承载范围之内。所以你得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用 MQ 来异步写,提升并发性。MQ 单机抗几万并发也是 ok 的,这个之前还特意说过。


分库分表

分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来扛更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高 sql 跑的性能。


读写分离

读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。


ElasticSearch

Elasticsearch,简称 es。es 是分布式的,可以随便扩容,分布式天然就可以支撑高并发,因为动不动就可以扩容加机器来扛更高的并发。那么一些比较简单的查询、统计类的操作,可以考虑用 es 来承载,还有一些全文搜索类的操作,也可以考虑用 es 来承载。


上面的 6 点,基本就是高并发系统肯定要干的一些事儿,大家可以仔细结合之前讲过的知识考虑一下,到时候你可以系统的把这块阐述一下,然后每个部分要注意哪些问题,之前都讲过了,你都可以阐述阐述,表明你对这块是有点积累的。


说句实话,毕竟你真正厉害的一点,不是在于弄明白一些技术,或者大概知道一个高并发系统应该长什么样?其实实际上在真正的复杂的业务系统里,做高并发要远远比上面提到的点要复杂几十倍到上百倍。你需要考虑:哪些需要分库分表,哪些不需要分库分表,单库单表跟分库分表如何 join,哪些数据要放到缓存里去,放哪些数据才可以扛住高并发的请求,你需要完成对一个复杂业务系统的分析之后,然后逐步逐步的加入高并发的系统架构的改造,这个过程是无比复杂的,一旦做过一次,并且做好了,你在这个市场上就会非常的吃香。


其实大部分公司,真正看重的,不是说你掌握高并发相关的一些基本的架构知识,架构中的一些技术,RocketMQ、Kafka、Redis、Elasticsearch,高并发这一块,你了解了,也只能是次一等的人才。对一个有几十万行代码的复杂的分布式系统,一步一步架构、设计以及实践过高并发架构的人,这个经验是难能可贵的。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
6月前
|
消息中间件 缓存 NoSQL
谈谈高并发系统的设计方法论
设计 `高并发` 系统,就是要让该系统保证它 `整体可用` 的同时,能够尽可能多的 `处理很高的并发用户请求`,能够 `承受很大的负载流量冲击`。
737 6
|
6月前
|
缓存 NoSQL 关系型数据库
|
4月前
|
消息中间件 算法 数据库
架构设计篇问题之商城系统高并发写的问题如何解决
架构设计篇问题之商城系统高并发写的问题如何解决
|
1月前
|
Java Go 云计算
Go语言在云计算和高并发系统中的卓越表现
【10月更文挑战第10天】Go语言在云计算和高并发系统中的卓越表现
|
3月前
|
监控 算法 Java
企业应用面临高并发等挑战,优化Java后台系统性能至关重要
随着互联网技术的发展,企业应用面临高并发等挑战,优化Java后台系统性能至关重要。本文提供三大技巧:1)优化JVM,如选用合适版本(如OpenJDK 11)、调整参数(如使用G1垃圾收集器)及监控性能;2)优化代码与算法,减少对象创建、合理使用集合及采用高效算法(如快速排序);3)数据库优化,包括索引、查询及分页策略改进,全面提升系统效能。
48 0
|
4月前
|
消息中间件 缓存 监控
如何设计一个秒杀系统,(高并发高可用分布式集群)
【7月更文挑战第4天】设计一个高并发、高可用的分布式秒杀系统是一个非常具有挑战性的任务,需要从架构、数据库、缓存、并发控制、降级限流等多个维度进行考虑。
129 1
|
4月前
|
设计模式 存储 缓存
Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
55 0
|
6月前
|
算法
【数据结构与算法 11,高并发系统基础篇
【数据结构与算法 11,高并发系统基础篇
|
6月前
|
缓存 负载均衡 网络协议
作者推荐 | 高并发挑战?试试这些架构优化篇技巧,让你的系统焕发新生!
作者推荐 | 高并发挑战?试试这些架构优化篇技巧,让你的系统焕发新生!
333 1
|
6月前
|
监控 NoSQL Java
记一次线上商城系统高并发的优化
记一次线上商城系统高并发的优化
152 0