Linux MIPI DSI LCD设备驱动开发调试细节学习笔记(一)

简介: Linux MIPI DSI LCD设备驱动开发调试细节学习笔记(一)

最近在学习MIPI接口的LCD驱动开发与调试,这里我主要用的是MIPI-DSI接口,它学习起来真的是太复杂了,特别是对于我这种很久都没写驱动来说更是头疼,但是头疼归头疼,工作咱们还是要完成的,那就只能硬着头皮往下肝吧!


首先了解下什么是MIPI-DSI


MIPI-DSI是一种应用于显示技术的串行接口,兼容DPI(显示像素接口,Display Pixel Interface)、DBI(显示总线接口,Display Bus Interface)和DCS(显示命令集,Display Command Set),以串行的方式发送像素信息或指令给外设,而且从外设中读取状态信息或像素信息,而且在传输的过程中享有自己独立的通信协议,包括数据包格式和纠错检错机制。下图所示的是MIPI-DSI接口的简单示意图。MIPI-DSI具备高速模式和低速模式两种工作模式,全部数据通道都可以用于单向的高速传输,但只有第一个数据通道才可用于低速双向传输,从属端的状态信息、像素等格式通过该数据通道返回。时钟通道专用于在高速传输数据的过程中传输同步时钟信号。此外,一个主机端可允许同时与多个从属端进行通信。(摘抄自网友)

640.png

那么,在Linux中调试MIPI LCD需要注意哪些细节呢?分别是:


  • 供电
  • 复位
  • 时序
  • 像素时钟
  • MIPI时钟(本章不涉及)
  • MIPI命令(本章不涉及)
  • MIPI数据格式(本章不涉及)


在Linux驱动开发过程中,一般通用的MIPI的驱动都是现成的,比如以下的simple-panel-dsi,就是通用的MIPI接口LCD驱动,它在Linux内核中位于driver/gpu/drm/panel目录下,对应的文件是:panel-simple.c


一般使用通用的MIPI LCD驱动,我们只需要根据自己选购的屏的参数进行配置即可,也就是只需要配置设备树即可顺利完成点屏的操作,那么如何来配置相关参数呢?这里我用的是瑞芯微的RV1109方案,在此借用荣品LCD的设备树我们来学习下它的设备树参数:

&dsi {
 status = "okay";
 rockchip,lane-rate = <480>;
 panel@0 {
  compatible ="simple-panel-dsi";
  reg = <0>;
  backlight = <&backlight>;
  /delete-property/ power-supply;
  prepare-delay-ms = <100>;
  reset-delay-ms = <10>;
  init-delay-ms = <100>;
  disable-delay-ms = <50>;
  unprepare-delay-ms = <20>;
  width-mm = <68>;
  height-mm = <121>;
  pinctrl-names = "default";
  pinctrl-0 = <&vdd_5v_3v3_h>;
  enable-gpios = <&gpio2 27 GPIO_ACTIVE_HIGH>;
  reset-gpios  = <&gpio3 4 GPIO_ACTIVE_LOW>;
  dsi,flags = <(MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
         MIPI_DSI_MODE_LPM | MIPI_DSI_MODE_EOT_PACKET)>;
  dsi,format = <MIPI_DSI_FMT_RGB888>;
  dsi,lanes = <4>;
  panel-init-sequence = [
   05 78 01 11
   05 78 01 29
  ];
  display-timings {
   native-mode = <&timing0>;
   timing0: timing0 {
    clock-frequency = <51000000>;
    hactive = <1024>;
    vactive = <600>;
    hback-porch = <160>;
    hfront-porch = <136>;
    vback-porch = <16>;
    vfront-porch = <16>;
    hsync-len = <4>;
    vsync-len = <2>;
    hsync-active = <0>;
    vsync-active = <0>;
    de-active = <0>;
    pixelclk-active = <0>;
   };
  };
  ports {
   #address-cells = <1>;
   #size-cells = <0>;
   port@0 {
    reg = <0>;
    panel_in_dsi: endpoint {
     remote-endpoint = <&dsi_out_panel>;
    };
   };
  };
 };
 ports {
  #address-cells = <1>;
  #size-cells = <0>;
  port@1 {
   reg = <1>;
   dsi_out_panel: endpoint {
    remote-endpoint = <&panel_in_dsi>;
   };
  };
 };
};

上面提供了非常多的节点,但是怎么去理解这些节点呢??Linux内核为我们提供了丰富的文档:

640.png

640.png

有了这些文档,我们再来看上面设备树节点的内容就简单多了,当然我们也可以结合代码来理解这些参数的含义:

640.png

先列举一些重要的参数:

1、enable-gpios和reset-gpios

640.png

enable-gpios配置的是LCD的使能脚,reset-gpios配置的是LCD的复位脚:

enable-gpios = <&gpio2 27 GPIO_ACTIVE_HIGH>;
reset-gpios  = <&gpio3 4 GPIO_ACTIVE_LOW>;

如上所示,为什么是27和4,我们要查询下IO口绑定的编号,如下:

640.png

2、hactive, vactive:

表示显示分辨率,在设备树里一般如下表示:

hactive = <1024>;  //水平分辨率
vactive = <600>;   //垂直分辨率

跟分辨率相关的内容我们一般都可以从LCD厂家提供的数据手册里找到它们:

640.png

3、dsi,lanes

确定接口类型为MIPI,MIPI能够实现多通道差分传输,所以通过数据手册我们可以了解它具体有多少路:

640.png

640.png

640.png

640.png

根据数据手册,我们很容易了解到数据通道有4组,所以对应设备树中的配置如下:

dsi,lanes = <4>; //表示使用 4lane 传输数据

4、时序

640.png

一般厂家FAE会给到我们一组参数,分别是:

lane个数(与原理图匹配)
HSA、HBP、HACT、HFP
VSA、VBP、VACT、VFP
FR
pixel_clk (KHZ)
phy_data_rate (Mbps)
其中参考了网上的一些计算公式:
(1)HBB = HSA + HBP
(2)VBB = VSA + VBP
(3)pixel_clk = round((HBB+HACT+HFP)*(VBB+VACT+VFP)*FR/1000) KHZ
(4)phy_data_rate = round((HBB+HACT+HFP)*(VBB+VACT+VFP)*FR*output_format/lane个数/1000000) Mbps
output_format是输出数据字节数,例:RBG24即为24

根据以上提供的这些参数就可以完成MIPI DSI的时序初始化。比如我随便找一个LCD的数据手册就会看到:

640.png

640.png

640.png

4.1、以像素为单位的水平显示时序参数

在LCD屏厂手册里一般都会提供以下三个参数,分别是:


  • hfront-porch:(HFP)
  • hback-porch:(HBP)
  • hsync-len:(HSA)


荣品的LCD手册里没有提供这部分的时序描述,仅在设备树里配置了几个参数而已,至于为什么那么配,我也不知道,只能说知道是什么含义就行了:

hback-porch = <160>;
hfront-porch = <136>; 
hsync-len = <4>;

相对应的在以像素为单位的水平时序里还有一个水平脉冲的配置选项:hsync-active,官方文档描述是:hsync pulse is active low/high/ignored,也就是说,如果要配置的话要么就是0/1,要么就不配置,默认配置:

hsync-active = <0>;
4.2、以行为单位的垂直显示时序参数

在LCD屏厂手册里一般都会提供以下三个参数,分别是:


  • vfront-porch:(VFP)
  • vback-porch:(VBP)
  • vsync-len:(VSA)


荣品的LCD手册里没有提供这部分的时序描述,仅在设备树里配置了几个参数而已,至于为什么那么配,我也不知道,只能说知道是什么含义就行了:

vback-porch = <16>;
vfront-porch = <16>;
vsync-len = <2>;

相对应的在以行为单位的垂直显示时序里还有一个水平脉冲的配置选项:vsync-active,官方文档描述是:vsync pulse is active low/high/ignored,也就是说,如果要配置的话要么就是0/1,要么就不配置,默认配置:

vsync-active = <0>;
4.3、数据使能 & 像素时钟脉冲参数

(1)de-active:

data-enable pulse is active low/high/ignored
de-active = <0>;

(2)pixelclk-active:数据采样的方式


配置为1:上升沿驱动像素数据/下降沿采样数据


配置为0:下降沿驱动像素数据/上升沿采样数据

pixelclk-active = <0>;

5、像素时钟的配置

一般像素时钟有一个计算公式,如下:

(h+hbp+hfp+hsa)*(v+vbp+vfp+vsa)*60

也就是说把厂家手册提供给我们的时序参数往这个公式里面套,最终就可以算出我们的像素时钟是多少了。

6、panel-init-sequence

这部分一般指的是厂家给我们提供的屏幕的初始化代码,官方文档的介绍是这样的:

A byte stream formed by simple multiple dcs packets.
byte 0: dcs data type
byte 1: wait number of specified ms after dcs command transmitted
byte 2: packet payload length
byte 3 and beyond: number byte of payload

荣品的设备树这部分配置如下:

panel-init-sequence = [
   05 78 01 11
   05 78 01 29
  ];

还有很多内容,分几个章节来写吧,今天就学习总结到这了。

往期精彩

一个强大的音视频编解码库-rkmedia的应用


瑞芯微RV1109配置7寸电容触摸屏的方向修改笔记


如何添加APP到Buildroot里(以瑞芯微rv1126为例)


瑞芯微RV1109配置GPIO设备树修改笔记(熟悉新平台从点灯大法开始)


新产品立项了,作为嵌入式软件工程师该如何来开展设计工作?(个人经验分享)

目录
相关文章
|
5月前
|
安全 Linux 网络安全
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
161 0
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
|
6月前
|
数据采集 编解码 运维
一文讲完说懂 WowKey -- WowKey 是一款 Linux 类设备的命令行(CLT)运维工具
WowKey 是一款面向 Linux 类设备的命令行运维工具,支持自动登录、批量执行及标准化维护,适用于企业、团队或个人管理多台设备,显著提升运维效率与质量。
|
7月前
|
监控 Linux 开发者
理解Linux操作系统内核中物理设备驱动(phy driver)的功能。
综合来看,物理设备驱动在Linux系统中的作用是至关重要的,它通过与硬件设备的紧密配合,为上层应用提供稳定可靠的通信基础设施。开发一款优秀的物理设备驱动需要开发者具备深厚的硬件知识、熟练的编程技能以及对Linux内核架构的深入理解,以确保驱动程序能在不同的硬件平台和网络条件下都能提供最优的性能。
394 0
|
Shell Linux
Linux shell编程学习笔记30:打造彩色的选项菜单
Linux shell编程学习笔记30:打造彩色的选项菜单
|
9月前
|
安全 Ubuntu Linux
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
346 0
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
|
缓存 NoSQL Linux
Linux调试
本文介绍了Linux调试、性能分析和追踪的培训资料,涵盖调试、性能分析和追踪的基础知识及常用工具。
1026 63
Linux调试
|
10月前
|
运维 安全 Linux
试试Linux设备命令行运维工具——Wowkey
WowKey 是一款专为 Linux 设备设计的命令行运维工具,提供自动化、批量化、标准化、简单化的运维解决方案。它简单易用、高效集成且无依赖,仅需 WIS 指令剧本文件、APT 账号密码文件和 wowkey 命令即可操作。通过分离鉴权内容与执行内容,WowKey 让运维人员专注于决策,摆脱繁琐的交互与执行细节工作,大幅提升运维效率与质量。无论是健康检查、数据采集还是配置更新,WowKey 都能助您轻松应对大规模设备运维挑战。立即从官方资源了解更多信息:https://atsight.top/training。
|
10月前
|
数据采集 运维 安全
Linux设备命令行运维工具WowKey问答
WowKey 是一款用于 Linux 设备运维的工具,可通过命令行手动或自动执行指令剧本,实现批量、标准化操作,如健康检查、数据采集、配置更新等。它简单易用,只需编写 WIS 指令剧本和 APT 帐号密码表文件,学习成本极低。支持不同流派的 Linux 系统,如 RHEL、Debian、SUSE 等,只要使用通用 Shell 命令即可通吃Linux设备。
|
11月前
|
监控 Shell Linux
Android调试终极指南:ADB安装+多设备连接+ANR日志抓取全流程解析,覆盖环境变量配置/多设备调试/ANR日志分析全流程,附Win/Mac/Linux三平台解决方案
ADB(Android Debug Bridge)是安卓开发中的重要工具,用于连接电脑与安卓设备,实现文件传输、应用管理、日志抓取等功能。本文介绍了 ADB 的基本概念、安装配置及常用命令。包括:1) 基本命令如 `adb version` 和 `adb devices`;2) 权限操作如 `adb root` 和 `adb shell`;3) APK 操作如安装、卸载应用;4) 文件传输如 `adb push` 和 `adb pull`;5) 日志记录如 `adb logcat`;6) 系统信息获取如屏幕截图和录屏。通过这些功能,用户可高效调试和管理安卓设备。
|
运维 监控 Linux
BPF及Linux性能调试探索初探
BPF技术从最初的网络数据包过滤发展为强大的系统性能优化工具,无需修改内核代码即可实现实时监控、动态调整和精确分析。本文深入探讨BPF在Linux性能调试中的应用,介绍bpftune和BPF-tools等工具,并通过具体案例展示其优化效果。
639 14

热门文章

最新文章