Python数据科学入门

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 生成AI,ChatGPT,Google Bard - 这些可能是你在过去几个月里听到的很多术语。随着这种轩然,你们中的许多人都在考虑进入技术领域,例如数据科学。
推荐:使用 NSDT场景编辑器 快速搭建3D应用场景

来自不同角色的人都希望保住自己的工作,因此他们将致力于发展自己的技能以适应当前的市场。这是一个竞争激烈的市场,我们看到越来越多的人对数据科学产生兴趣;该行业有数千门在线课程、训练营和硕士 (MSc)。

话虽如此,如果你想进入数据科学的世界,你需要了解Python。

Python 在数据科学中的作用

Python由荷兰程序员Guido van Rossum于1991年<>月开发。该设计非常强调代码的易读性。语言和面向对象方法的构建有助于新的和当前的程序员编写清晰易懂的代码,从小项目到大项目,再到使用小数据到大数据。

31年后,Python被认为是当今最好的编程语言之一。

Python 包含各种库和框架,因此您不必从头开始做所有事情。这些预构建的组件包含有用且可读的代码,您可以在程序中实现这些代码。例如,NumPy,Matplotlib,SciPy,BeautifulSoup等。

如果您想了解有关 Python 库的更多信息,请阅读以下文章:2022 年科学家应该知道的 Python 库数据。

Python 高效、快速且可靠,允许开发人员以最小的工作量创建应用程序、执行分析和生成可视化输出。成为数据科学家所需的一切!

设置Python

如果你想成为一名数据科学家,我们将通过一个分步指南来帮助你开始使用Python:

安装Python

首先,您需要下载最新版本的Python。您可以通过前往官方网站找到最新版本 此处.

根据您的操作系统,按照安装说明进行操作直到最后。

选择 IDE 或代码编辑器

IDE是一个集成开发环境,它是程序员用来更有效地开发软件代码的软件应用程序。代码编辑器具有相同的目的,但它是文本编辑器程序。

如果您不确定选择哪一个,我将提供热门选项列表:

  • Visual Studio Code (VSCode)
  • PyCharm
  • Jupyter Notebook

当我开始我的数据科学职业生涯时,我使用VSC和Jupyter Notebook,我发现它们在我的数据科学学习和交互式编码中非常有用。一旦您选择了适合您需求的产品,请安装它并完成有关如何使用它们的演练。

学习基础知识

在深入研究综合项目之前,您需要先学习基础知识。因此,让我们深入研究它们。

变量和数据类型

变量是用于存储数据值的容器的术语。数据值具有各种数据类型,例如整数、浮点数、字符串、列表、元组、字典等。学习这些非常重要,可以建立您的基础知识。

在下面的示例中,变量是一个名称,它包含值“John”。数据类型为字符串:。name = "John"

运算符和表达式

运算符是允许计算任务的符号,例如加法、减法、乘法、除法、幂等。Python 中的表达式是运算符和操作数的组合。

例如x = x + 1 0x = x + 10 x = x+ 10

控制结构

控制结构通过在代码中指定执行流,使编程工作更轻松。在 Python 中,您需要学习几种类型的控制结构,例如条件语句、循环和异常处理。

例如:

if x > 0: 
    print("Positive") 
else: 
    print("Non-positive")

功能

函数是一个代码块,这个代码块只有在被调用时才能运行。您可以使用关键字创建函数。def

例如

def greet(name): 
    return f"Hello, {name}!"

模块和库

Python 中的模块是一个包含 Python 定义和语句的文件。它可以定义函数、类和变量。库是相关模块或包的集合。可以通过使用语句导入模块和库来使用它们。import

例如,我在上面提到Python包含各种库和框架,如NumPy。您可以通过运行以下命令导入这些不同的库:

import numpy as np
import pandas as pd
import math
import random

您可以使用 Python 导入各种库和模块。

使用数据

一旦您更好地了解了基础知识及其工作原理,下一步就是使用这些技能来处理数据。您将需要学习如何:

使用Pandas导入和导出数据

Pandas是数据科学领域广泛使用的Python库,因为它提供了一种灵活直观的方法来处理各种大小的数据集。假设您有一个 CSV 文件数据,您可以使用 pandas 通过以下方式导入数据集:

import pandas as pd
example_data = pd.read_csv("data/example_dataset1.csv")

数据清理和操作

数据清理和操作是数据科学项目数据预处理阶段的重要步骤,因为您获取原始数据并梳理其所有不一致、错误和缺失值,以将其转换为可用于分析的结构化格式。

数据清理的要素包括:

  • 处理缺失值
  • 重复数据
  • 异常
  • 数据转换
  • 数据类型清理

数据操作的元素包括:

  • 选择和筛选数据
  • 对数据进行排序
  • 对数据进行分组
  • 联接和合并数据
  • 创建新变量
  • 旋转和交叉制表

您将需要学习所有这些元素以及如何在Python中使用它们。想要立即开始,您可以使用这本免费电子书学习数据科学的数据清理和预处理。

统计分析

作为数据科学家的一部分,您需要了解如何梳理数据以识别趋势、模式和见解。您可以通过统计分析来实现这一点。这是收集和分析数据以识别模式和趋势的过程。

此阶段用于通过数值分析消除偏差,使您能够进一步研究、开发统计模型等。这些结论用于决策过程,以根据过去的趋势进行未来预测。

有6种类型的统计分析:

  1. 描述性分析
  2. 推论分析
  3. 预测分析
  4. 规范性分析
  5. 探索性数据分析
  6. 因果分析

在这篇博客中,我将更深入地探讨探索性数据分析。

探索性数据分析 (EDA)

清理和操作数据后,就可以进行下一步:探索性数据分析。这是数据科学家分析和调查数据集并创建主要特征/变量的摘要,以帮助他们获得进一步的见解并创建数据可视化。

EDA 工具包括

  • 预测建模,如线性回归
  • 聚类技术,例如 K 均值聚类
  • 降维技术,如主成分分析 (PCA)
  • 单变量、双变量和多变量可视化

数据科学的这个阶段可能是最困难的方面,需要大量的实践。库和模块可以为您提供帮助,但您需要了解手头的任务以及您希望的结果是什么,以确定您需要什么 EDA 工具。

数据可视化

EDA 用于获得进一步的见解并创建数据可视化。作为数据科学家,您需要创建发现的可视化效果。这可以是基本的可视化效果,例如折线图、条形图和散点图,但您可以非常有创意,例如热图、分区统计图和气泡图。

您可以使用各种数据可视化库,但这些是最受欢迎的:

  • Matplotlib
  • Seaborn
  • Plotly

数据可视化可以更好地沟通,特别是对于技术倾向不高的利益相关者。

总结

本博客旨在指导初学者在数据科学职业生涯中学习 Python 需要采取的步骤。每个阶段都需要时间和精力来掌握。


原文链接:https://www.mvrlink.com/getting-started-with-python-for-data-science/

目录
相关文章
|
28天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
29天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
28天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
38 7
|
30天前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
42 5
|
29天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
70 3
|
1月前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
设计模式 缓存 开发者
Python中的装饰器:从入门到实践####
本文深入探讨了Python中强大的元编程工具——装饰器,它能够以简洁优雅的方式扩展函数或方法的功能。通过具体实例和逐步解析,文章不仅介绍了装饰器的基本原理、常见用法及高级应用,还揭示了其背后的设计理念与实现机制,旨在帮助读者从理论到实战全面掌握这一技术,提升代码的可读性、可维护性和复用性。 ####
|
2月前
|
存储 人工智能 数据挖掘
Python编程入门:打造你的第一个程序
本文旨在为初学者提供Python编程的初步指导,通过介绍Python语言的基础概念、开发环境的搭建以及一个简单的代码示例,帮助读者快速入门。文章将引导你理解编程思维,学会如何编写、运行和调试Python代码,从而开启编程之旅。
47 2