✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
❤️ 内容介绍
在机器学习和人工智能领域,回归预测是一个重要的任务,它可以用于预测连续值的输出。近年来,神经网络被广泛应用于回归预测任务中,其中门控循环单元(GRU)是一种常用的循环神经网络模型。本文将介绍一种基于哈里斯鹰算法优化门控循环单元的神经网络模型,用于实现多输入单输出的回归预测。
在传统的GRU模型中,存在一些问题,如梯度消失和梯度爆炸等。为了解决这些问题,我们引入了哈里斯鹰算法(HHO)进行优化。哈里斯鹰算法是一种新兴的优化算法,它模拟了鹰类的觅食行为,具有较好的全局搜索能力和快速收敛性。通过将HHO算法应用于GRU模型的优化过程中,我们可以提高模型的性能和收敛速度。
首先,我们需要对GRU模型进行简要介绍。GRU是一种门控循环神经网络模型,由于其简单的结构和较好的性能,在自然语言处理和时间序列预测等任务中得到了广泛应用。GRU模型由更新门、重置门和候选隐藏状态三个关键部分组成。更新门控制了当前时间步的信息如何被传递到下一时间步,重置门控制了当前时间步的隐藏状态如何与上一时间步的隐藏状态进行组合。候选隐藏状态根据当前时间步的输入和上一时间步的隐藏状态计算得到。
接下来,我们介绍如何使用哈里斯鹰算法优化GRU模型。首先,我们需要定义适应度函数,用于评估模型的性能。适应度函数可以根据实际问题的需求进行定义,例如均方误差(MSE)或平均绝对误差(MAE)。然后,我们使用HHO算法对GRU模型的参数进行优化。HHO算法通过模拟鹰类的觅食行为,将优化问题转化为搜索问题。鹰类根据当前最优解和其他鹰类的位置进行搜索,并更新自己的位置和速度。最后,我们根据优化后的模型参数进行回归预测。
使用基于哈里斯鹰算法优化的GRU模型进行回归预测可以带来多个优势。首先,由于HHO算法具有较好的全局搜索能力,可以更好地避免局部最优解。其次,HHO算法具有快速收敛性,可以加快模型的训练速度。最后,通过优化GRU模型的参数,可以提高模型的性能和预测精度。
在实际应用中,我们可以将基于哈里斯鹰算法优化的GRU模型应用于各种回归预测任务,例如股票价格预测、销售量预测等。通过合理选择适应度函数和调整HHO算法的参数,我们可以获得更好的回归预测结果。
总结而言,本文介绍了一种基于哈里斯鹰算法优化门控循环单元的神经网络模型,用于实现多输入单输出的回归预测。通过引入HHO算法,我们可以提高模型的性能和收敛速度。这种方法在回归预测任务中具有广泛的应用前景,可以帮助我们更好地解决实际问题。希望本文对读者在神经网络回归预测领域的研究和应用提供一些启发和参考。
🔥核心代码
% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1 Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1 for i=1:dim ub_i=ub(i); lb_i=lb(i); Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i; endend
❤️ 运行结果
⛄ 参考文献
[1] 殷礼胜,刘攀,孙双晨,等.基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型[J].电子与信息学报, 2022, 44:1-10.DOI:10.11999/JEIT221172.
[2] 左思雨,赵强,张冰,等.基于VMD-SSA-GRU的船舶运动姿态预测[J].舰船科学技术, 2022, 44(23):60-65.
[3] 万定生,朱海南,刘昕玥,等.基于正则化和自适应遗传算法的水文预测模型的构建方法:CN202010876835.9[P].CN112015719A[2023-09-10].
[4] 段宛伶.人民币日度汇率值与经济基本变量的关系分析及其预测[J].[2023-09-10].