ElasticSearch快速入门(2)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: ElasticSearch快速入门(2)

4.4 ES数据类型

  1. 简单数据类型
  • 字符串

聚合:相当于mysql 中的sum(求和)

text:会分词,不支持聚合
keyword:不会分词,将全部内容作为一个词条,支持聚合
  • 数值
  • 布尔:boolean
  • 二进制:binary
  • 范围类型
integer_range, float_range, long_range, double_range, date_range
  • 日期:date
  1. 复杂数据类型

•数组:[ ] Nested: nested (for arrays of JSON objects 数组类型的JSON对象)

•对象:{ } Object: object(for single JSON objects 单个JSON对象)

4.5 操作映射

 PUT person
 GET person
 #添加映射
 PUT /person/_mapping
 {
   "properties":{
     "name":{
       "type":"text"
     },
     "age":{
       "type":"integer"
     }
   }
 }

#创建索引并添加映射

 #创建索引并添加映射
 PUT /person1
{
  "mappings": {
    "properties": {
      "name": {
        "type": "text"
      },
      "age": {
        "type": "integer"
      }
    }
  }
}
GET person1/_mapping

添加字段

#添加字段
PUT /person1/_mapping
{
  "properties": {
      "name": {
        "type": "text"
      },
      "age": {
        "type": "integer"
      }
    }
}

4.6 操作文档

•添加文档,指定id

POST /person1/_doc/2
{
  "name":"张三",
  "age":18,
  "address":"北京"
}
GET /person1/_doc/1

•添加文档,不指定id

#添加文档,不指定id
POST /person1/_doc/
{
  "name":"张三",
  "age":18,
  "address":"北京"
}
#查询所有文档
GET /person1/_search
#删除指定id文档
DELETE /person1/_doc/1

5 分词器

5.1分词器-介绍

•IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包

•是一个基于Maven构建的项目

•具有60万字/秒的高速处理能力

•支持用户词典扩展定义

•下载地址:https://github.com/medcl/elasticsearch-analysis-ik/archive/v7.4.0.zip

安装包在资料文件夹中提供

5.2 ik分词器安装

参见 ik分词器安装.md

执行如下命令时如果出现 打包失败(501码)将maven镜像换成阿里云的

mvn package

/opt/apache-maven-3.1.1/conf/setting.xml

  <mirror>
        <id>alimaven</id>
        <name>aliyun maven</name>
        <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        <mirrorOf>central</mirrorOf>
    </mirror>

5.3-ik分词器使用

IK分词器有两种分词模式:ik_max_word和ik_smart模式。

1、ik_max_word

会将文本做最细粒度的拆分,比如会将“乒乓球明年总冠军”拆分为“乒乓球、乒乓、球、明年、总冠军、冠军。

#方式一ik_max_word
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "乒乓球明年总冠军"
}

ik_max_word分词器执行如下:

{
  "tokens" : [
    {
      "token" : "乒乓球",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "乒乓",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "球",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "明年",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "总冠军",
      "start_offset" : 5,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "冠军",
      "start_offset" : 6,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

2、ik_smart

会做最粗粒度的拆分,比如会将“乒乓球明年总冠军”拆分为乒乓球、明年、总冠军。

#方式二ik_smart
GET /_analyze
{
  "analyzer": "ik_smart",
  "text": "乒乓球明年总冠军"
}

ik_smart分词器执行如下:

{
  "tokens" : [
    {
      "token" : "乒乓球",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "明年",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "总冠军",
      "start_offset" : 5,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

由此可见 使用ik_smart可以将文本"text": "乒乓球明年总冠军"分成了【乒乓球】【明年】【总冠军】

这样看的话,这样的分词效果达到了我们的要求。

5.4 使用IK分词器-查询文档

•词条查询:term

词条查询不会分析查询条件,只有当词条和查询字符串完全匹配时才匹配搜索

•全文查询:match

全文查询会分析查询条件,先将查询条件进行分词,然后查询,求并集

1.创建索引,添加映射,并指定分词器为ik分词器

PUT person2
{
  "mappings": {
    "properties": {
      "name": {
        "type": "keyword"
      },
      "address": {
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

2.添加文档

POST /person2/_doc/1
{
  "name":"张三",
  "age":18,
  "address":"北京海淀区"
}
POST /person2/_doc/2
{
  "name":"李四",
  "age":18,
  "address":"北京朝阳区"
}
POST /person2/_doc/3
{
  "name":"王五",
  "age":18,
  "address":"北京昌平区"
}

3.查询映射

GET person2

20201223192450561.png

4.查看分词效果

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "北京海淀"
}

5.词条查询:term

查询person2中匹配到"北京"两字的词条

GET /person2/_search
{
  "query": {
    "term": {
      "address": {
        "value": "北京"
      }
    }
  }
}

6.全文查询:match

全文查询会分析查询条件,先将查询条件进行分词,然后查询,求并集

GET /person2/_search
{
  "query": {
    "match": {
      "address":"北京昌平"
    }
  }
}

6 ElasticSearch JavaApi

6.1SpringBoot整合ES

①搭建SpringBoot工程

②引入ElasticSearch相关坐标

<!--引入es的坐标-->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>7.4.0</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-client</artifactId>
            <version>7.4.0</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>7.4.0</version>
        </dependency>

③测试

ElasticSearchConfig

@Configuration
@ConfigurationProperties(prefix="elasticsearch")
public class ElasticSearchConfig {
    private String host;
    private int port;
    public String getHost() {
        return host;
    }
    public void setHost(String host) {
        this.host = host;
    }
    public int getPort() {
        return port;
    }
    public void setPort(int port) {
        this.port = port;
    }
    @Bean
    public RestHighLevelClient client(){
        return new RestHighLevelClient(RestClient.builder(
                new HttpHost(host,port,"http")
        ));
    }
}

ElasticsearchDay01ApplicationTests

注意:使用@Autowired注入RestHighLevelClient 如果报红线,则是因为配置类所在的包和测试类所在的包,包名不一致造成的

@SpringBootTest
class ElasticsearchDay01ApplicationTests {
    @Autowired
    RestHighLevelClient client;
    /**
     * 测试
     */
    @Test
    void contextLoads() {
        System.out.println(client);
    }
}

拓展知识

使用spring-boot-starter-data-elasticsearch整合es

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
spring.elasticsearch.rest.uris=http://192.168.111.135:9200
package com.example.esdemo;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
@Document(indexName = "user_haha")
public class User {
    @Id
    private String id;
    private String username;
    private String address;
    public String getUsername() {
        return username;
    }
    public void setUsername(String username) {
        this.username = username;
    }
    public String getAddress() {
        return address;
    }
    public void setAddress(String address) {
        this.address = address;
    }
    public String getId() {
        return id;
    }
    public void setId(String id) {
        this.id = id;
    }
}
package com.example.esdemo;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate;
import org.springframework.data.elasticsearch.core.IndexOperations;
@SpringBootTest(classes = EsDemoApplication.class)
public class EsDemoApplicationTests {
//    @Test
//    void contextLoads() {
//    }
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;
    @Test
    public void t(){
        elasticsearchRestTemplate.indexOps(User.class).create();
    }
    @Test
    public void sava(){
        User user = new User();
        user.setAddress("aa");
        user.setId("222");
        user.setUsername("huojintao");
        elasticsearchRestTemplate.save(user);
    }
}

6.2-创建索引

1.添加索引

/**
    * 添加索引
    * @throws IOException
    */
   @Test
   public void addIndex() throws IOException {
      //1.使用client获取操作索引对象
       IndicesClient indices = client.indices();
       //2.具体操作获取返回值
       //2.1 设置索引名称
       CreateIndexRequest createIndexRequest=new CreateIndexRequest("itheima");
       CreateIndexResponse createIndexResponse = indices.create(createIndexRequest, RequestOptions.DEFAULT);
       //3.根据返回值判断结果
       System.out.println(createIndexResponse.isAcknowledged());
   }

2.添加索引,并添加映射

 /**
     * 添加索引,并添加映射
     */
    @Test
    public void addIndexAndMapping() throws IOException {
       //1.使用client获取操作索引对象
        IndicesClient indices = client.indices();
        //2.具体操作获取返回值
        //2.具体操作,获取返回值
        CreateIndexRequest createIndexRequest = new CreateIndexRequest("oldlu");
        //2.1 设置mappings
        String mapping = "{\n" +
                "      \"properties\" : {\n" +
                "        \"address\" : {\n" +
                "          \"type\" : \"text\",\n" +
                "          \"analyzer\" : \"ik_max_word\"\n" +
                "        },\n" +
                "        \"age\" : {\n" +
                "          \"type\" : \"long\"\n" +
                "        },\n" +
                "        \"name\" : {\n" +
                "          \"type\" : \"keyword\"\n" +
                "        }\n" +
                "      }\n" +
                "    }";
        // 版本不同 选择不同 createIndexRequest.mapping(mapping,XContentType.JSON);
         createIndexRequest.mapping("_doc",mapping, XContentType.JSON);
        CreateIndexResponse createIndexResponse = indices.create(createIndexRequest, RequestOptions.DEFAULT);
        //3.根据返回值判断结果
        System.out.println(createIndexResponse.isAcknowledged());
    }

6.3-查询、删除、判断索引

查询索引

    /**
     * 查询索引
     */
    @Test
    public void queryIndex() throws IOException {
        IndicesClient indices = client.indices();
        GetIndexRequest getRequest=new GetIndexRequest("oldlu");
        GetIndexResponse response = indices.get(getRequest, RequestOptions.DEFAULT);
        Map<String, MappingMetaData> mappings = response.getMappings();
        //iter 提示foreach
        for (String key : mappings.keySet()) {
            System.out.println(key+"==="+mappings.get(key).getSourceAsMap());
        }
    }

删除索引

 /**
     * 删除索引
     */
    @Test
    public void deleteIndex() throws IOException {
         IndicesClient indices = client.indices();
        DeleteIndexRequest deleteRequest=new DeleteIndexRequest("itheima");
        AcknowledgedResponse delete = indices.delete(deleteRequest, RequestOptions.DEFAULT);
        System.out.println(delete.isAcknowledged());
    }

索引是否存在

 /**
     * 索引是否存在
     */
    @Test
    public void existIndex() throws IOException {
        IndicesClient indices = client.indices();
        GetIndexRequest getIndexRequest=new GetIndexRequest("itheima");
        boolean exists = indices.exists(getIndexRequest, RequestOptions.DEFAULT);
        System.out.println(exists);
    }

6.4-添加文档

1.添加文档,使用map作为数据

 @Test
    public void addDoc1() throws IOException {
        Map<String, Object> map=new HashMap<>();
        map.put("name","张三");
        map.put("age","18");
        map.put("address","北京二环");
        IndexRequest request=new IndexRequest("oldlu").id("1").source(map);
        IndexResponse response = client.index(request, RequestOptions.DEFAULT);
        System.out.println(response.getId());
    }

2.添加文档,使用对象作为数据

@Test
public void addDoc2() throws IOException {
    Person person=new Person();
    person.setId("2");
    person.setName("李四");
    person.setAge(20);
    person.setAddress("北京三环");
    String data = JSON.toJSONString(person);
    IndexRequest request=new IndexRequest("oldlu").id(person.getId()).source(data,XContentType.JSON);
    IndexResponse response = client.index(request, RequestOptions.DEFAULT);
    System.out.println(response.getId());
}
package com.example.esdemo;
public class Person {
    private String id;
    private String name;
    private int age;
    private String address;
    public String getId() {
        return id;
    }
    public void setId(String id) {
        this.id = id;
    }
    public String getName() {
        return name;
    }
    public void setName(String name) {
        this.name = name;
    }
    public int getAge() {
        return age;
    }
    public void setAge(int age) {
        this.age = age;
    }
    public String getAddress() {
        return address;
    }
    public void setAddress(String address) {
        this.address = address;
    }
    @Override
    public String toString() {
        return "Person{" +
                "id='" + id + '\'' +
                ", name='" + name + '\'' +
                ", age=" + age +
                ", address='" + address + '\'' +
                '}';
    }
}
   <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.4</version>
        </dependency>

6.5-修改、查询、删除文档

1.修改文档:添加文档时,如果id存在则修改,id不存在则添加

    /**
     * 修改文档:添加文档时,如果id存在则修改,id不存在则添加
     */
    @Test
    public void UpdateDoc() throws IOException {
        Person person=new Person();
        person.setId("2");
        person.setName("李四");
        person.setAge(20);
        person.setAddress("北京三环车王");
        String data = JSON.toJSONString(person);
        IndexRequest request=new IndexRequest("oldlu").id(person.getId()).source(data,XContentType.JSON);
        IndexResponse response = client.index(request, RequestOptions.DEFAULT);
        System.out.println(response.getId());
    }

2.根据id查询文档

    /**
     * 根据id查询文档
     */
    @Test
    public void getDoc() throws IOException {
        //设置查询的索引、文档
        GetRequest indexRequest=new GetRequest("oldlu","2");
        GetResponse response = client.get(indexRequest, RequestOptions.DEFAULT);
        System.out.println(response.getSourceAsString());
    }

3.根据id删除文档

/**
     * 根据id删除文档
     */
    @Test
    public void delDoc() throws IOException {
        //设置要删除的索引、文档
        DeleteRequest deleteRequest=new DeleteRequest("oldlu","1");
        DeleteResponse response = client.delete(deleteRequest, RequestOptions.DEFAULT);
        System.out.println(response.getId());
    }


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
JSON Java 程序员
教你快速入门ElasticSearch,超详细简单~ 2
教你快速入门ElasticSearch,超详细简单~
174 0
|
自然语言处理 关系型数据库 MySQL
ElasticSearch快速入门(1)
ElasticSearch快速入门(1)
100 1
|
存储 JSON 自然语言处理
教你快速入门ElasticSearch,超详细简单~ 1
教你快速入门ElasticSearch,超详细简单~
213 0
|
存储 前端开发 Java
ElasticSearch快速入门之创建索引库、创建映射、创建文档、搜索文档
ElasticSearch快速入门之创建索引库、创建映射、创建文档、搜索文档
395 0
|
存储 JSON JavaScript
Elasticsearch 快速入门|学习笔记
快速学习 Elasticsearch 快速入门
104 0
Elasticsearch 快速入门|学习笔记
|
存储 自然语言处理 关系型数据库
还不会ES?Elasticsearch快速入门实操指南送上(上)
还不会ES?Elasticsearch快速入门实操指南送上(上)
390 0
还不会ES?Elasticsearch快速入门实操指南送上(上)
|
自然语言处理 Java 索引
还不会ES?Elasticsearch快速入门实操指南送上(下)
还不会ES?Elasticsearch快速入门实操指南送上(下)
200 0
|
自然语言处理 Java 数据挖掘
【Spring Boot 快速入门】十三、Spring Boot集成Elasticsearch
【Spring Boot 快速入门】十三、Spring Boot集成Elasticsearch
312 0
【Spring Boot 快速入门】十三、Spring Boot集成Elasticsearch
|
消息中间件 缓存 JSON
|
消息中间件 Kafka Docker
【Elasticsearch全文搜索引擎实战】之Filebeat快速入门
0. 背景 用过ELK(Elasticsearch, Logstash, Kibana)的人应该都面临过同样的问题,Logstash虽然功能强大:支持许多的input/output plugin、强大的filter功能。
3001 0