使用Linux内核里的spi屏驱动-fbtft

简介: 使用Linux内核里的spi屏驱动-fbtft

内核里已经提供spi接口小屏的设备驱动,在内核的配置选项:

make menuconfig ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
    Device Drivers  --->  
    Graphics support  ---> 
       <*> Support for small TFT LCD display modules  --->
           ... //屏的驱动IC型号
           <*>   FB driver for the ILI9340 LCD Controller   //drivers/video/fbtft/fb_ili9340.c
           <*>   FB driver for the ST7735R LCD Controller  //drivers/video/fbtft/fb_st7735r.c
               ... 
           <M>   Module to for adding FBTFT devices      //drivers/video/fbtft/fbtft_device.c

保存退出后,重编内核镜像和编译驱动模块.

使用新内核镜像启动系统后:

加载驱动模块并指定参数, 如型号为ili9340的屏:

modprobe fbtft_device name=adafruit22a gpios="reset:8,dc:7" busnum=0

加载成功后, 会产生一个/dev/fb8设备文件。

修改QT环境变量: export QT_QPA_PLATFORM=linuxfb:fb=/dev/fb8生效后,执行Qt程序,效果如下:

640.jpg

在内核源码目录里:

[yyx@localhost linux-3.4.112]$ vim drivers/video/fbtft/fb
fb_bd663474.c       fb_ili9486.c        fb_ssd1351.c        fbtft-io.c
fb_hx8340bn.c       fb_pcd8544.c        fb_st7735r.c        fbtft-sysfs.c
fb_hx8347d.c        fb_ra8875.c         fbtft-bus.c         fb_tinylcd.c
fb_hx8353d.c        fb_s6d02a1.c        fbtft-core.c        fb_tls8204.c
fb_ili9320.c        fb_s6d1121.c        fbtft_device.c      fb_upd161704.c
fb_ili9325.c        fb_ssd1289.c        fbtft_device.ko     fb_watterott.c
fb_ili9340.c        fb_ssd1306.c        fbtft_device.mod.c  
fb_ili9341.c        fb_ssd1331.c        fbtft.h  

fb_xxxx.c就是具体型号的驱动IC设备驱动:

每个设备驱动源码里都会调用init_display函数用于初始化屏,我们可以根据此函数里设置的寄存器和值,确认屏驱动IC的型号:

static int init_display(struct fbtft_par *par)
{
    ...
    par->fbtftops.reset(par);
    write_reg(par, 0xEF, 0x03, 0x80, 0x02);
    write_reg(par, 0xCF, 0x00 , 0XC1 , 0X30);
    ...
}

每个屏由一个struct fbtft_display对象来描述:

static struct fbtft_display display = {
    .regwidth = 8,
    .width = WIDTH,
    .height = HEIGHT,
    .fbtftops = {
        .init_display = init_display,  //屏的初始化
        .set_addr_win = set_addr_win,  //设置屏的显示开始坐标
        .set_var = set_var,            //设置屏的翻转角度
    },
};
FBTFT_REGISTER_DRIVER(DRVNAME, &display);

调用宏FBTFT_REGISTER_DRIVER后都会产生和注册一个struct spi_driver对象和一个struct platform_driver对象.

#define FBTFT_REGISTER_DRIVER(_name, _display)                             \
                                       \
static int fbtft_driver_probe_spi(struct spi_device *spi)                  \
{                                                                          \
    return fbtft_probe_common(_display, spi, NULL);                    \
}                                                                          \
                                       \
static int fbtft_driver_remove_spi(struct spi_device *spi)                 \
{                                                                          \
    struct fb_info *info = spi_get_drvdata(spi);                       \
                                       \
    return fbtft_remove_common(&spi->dev, info);                       \
}                                                                          \
                                       \
static int fbtft_driver_probe_pdev(struct platform_device *pdev)           \
{                                                                          \
    return fbtft_probe_common(_display, NULL, pdev);                   \
}                                                                          \
                                       \
static int fbtft_driver_remove_pdev(struct platform_device *pdev)          \
{                                                                          \
    struct fb_info *info = platform_get_drvdata(pdev);                 \
                                       \
    return fbtft_remove_common(&pdev->dev, info);                      \
}                                   
static struct spi_driver fbtft_driver_spi_driver = {                       \
    .driver = {                                                        \
        .name   = _name,                                           \
        .owner  = THIS_MODULE,                                     \
    },                                                                 \
    .probe  = fbtft_driver_probe_spi,                                  \
    .remove = fbtft_driver_remove_spi,                                 \
};                                                                         \
                                       \
static struct platform_driver fbtft_driver_platform_driver = {             \
    .driver = {                                                        \
        .name   = _name,                                           \
        .owner  = THIS_MODULE,                                     \
    },                                                                 \
    .probe  = fbtft_driver_probe_pdev,                                 \
    .remove = fbtft_driver_remove_pdev,                                \
};       
static int __init fbtft_driver_module_init(void)                           \
{                                                                          \
    int ret;                                                           \
                                       \
    ret = spi_register_driver(&fbtft_driver_spi_driver);               \
    if (ret < 0)                                                       \
        return ret;                                                \
    return platform_driver_register(&fbtft_driver_platform_driver);    \
}                                                                          \
                                       \
static void __exit fbtft_driver_module_exit(void)                          \
{                                                                          \
    spi_unregister_driver(&fbtft_driver_spi_driver);                   \
    platform_driver_unregister(&fbtft_driver_platform_driver);         \
}                                                                          \
                                       \
module_init(fbtft_driver_module_init);                                     \
module_exit(fbtft_driver_module_exit);

我们可以通过描述spi设备或者平台设备来与屏的设备驱动匹配,但描述设备的参数有点复杂,所以内核里提供了fbtft_device.c,它把我们提供的模块参数,生成相应的spi设备或平台设备,并且提供相关的资源信息.

在fbtft_device.c里,它已定好多的设备名, 每个设备使用一个具体的屏型号:

static struct fbtft_device_display displays[] = {
    {    
        .name = "adafruit18",  //设备名
        .spi = &(struct spi_board_info) {
            .modalias = "fb_st7735r",   //屏的型号
            .max_speed_hz = 32000000,
            .mode = SPI_MODE_0,
            .platform_data = &(struct fbtft_platform_data) {
                .display = {
                    .buswidth = 8, 
                    .backlight = 1, 
                },
                .gpios = (const struct fbtft_gpio []) {
                    { "reset", 25 },
                    { "dc", 24 },
                    { "led", 18 },
                    {},
                },
                .gamma = ADAFRUIT18_GAMMA,
            }
        }
    }, { 
        .name = "adafruit18_green",
        .spi = &(struct spi_board_info) {
            .modalias = "fb_st7735r",
    ...

加载此驱动模块时,除了需要指定设备名外,还需要指定多个参数,具体可以通过modinfo查看:

modinfo /lib/modules/3.4.112/kernel/drivers/video/fbtft/fbtft_device.
ko
常用的模块参数有:
gpios用于指定reset,  dc, led等具体使用哪个io口
mode用于指定spi使用哪种时序
busnum用于指定使用第几个spi控制器
rotate用于指定翻转角度
name用于指定设备名
如:modprobe fbtft_device name=adafruit22a gpios="reset:8,dc:7" busnum=0 debug=0 rotate=90
   gpios="reset:8,dc:7"表示reset引脚是接在GPIOA(8), dc引脚是接在GPIOA(7)
在头文件里: arch/arm/mach-sunxi/include/mach/gpio.h
    #define SUNXI_PA_BASE   0
    #define GPIOA(n)    (SUNXI_PA_BASE + (n))
    所以得出GPIOA(8)的值是8

注意,不同的内核fbtft放置的目录可能不同,比如在周立功的A6G2C的内核下,fbtft在如下目录:

linux-src-a0722e0\A7-linux-src\drivers\staging\fbtft


目录
相关文章
|
4天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
21 4
|
7天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
28 6
|
6天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
27 9
|
5天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
23 6
|
6天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
23 5
|
6天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
7天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
6天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
9天前
|
Linux 数据库
Linux内核中的锁机制:保障并发操作的数据一致性####
【10月更文挑战第29天】 在多线程编程中,确保数据一致性和防止竞争条件是至关重要的。本文将深入探讨Linux操作系统中实现的几种关键锁机制,包括自旋锁、互斥锁和读写锁等。通过分析这些锁的设计原理和使用场景,帮助读者理解如何在实际应用中选择合适的锁机制以优化系统性能和稳定性。 ####
25 6
|
9天前
|
机器学习/深度学习 负载均衡 算法
深入探索Linux内核调度机制的优化策略###
本文旨在为读者揭开Linux操作系统中至关重要的一环——CPU调度机制的神秘面纱。通过深入浅出地解析其工作原理,并探讨一系列创新优化策略,本文不仅增强了技术爱好者的理论知识,更为系统管理员和软件开发者提供了实用的性能调优指南,旨在促进系统的高效运行与资源利用最大化。 ###

热门文章

最新文章