2023 年高教社杯E题黄河水沙监测数据分析思路及代码(持续更新)

简介: 2023 年高教社杯E题黄河水沙监测数据分析思路及代码(持续更新)

一、题目

黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变

化和人民生活的影响,以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾

等方面都具有重要的理论指导意义。

附件 1 给出了位于小浪底水库下游黄河某水文站近 6 年的水位、水流量与含沙量的实际监

测数据,附件 2 给出了该水文站近 6 年黄河断面的测量数据,附件 3 给出了该水文站部分监测

点的相关数据。请建立数学模型研究以下问题:

问题 1 研究该水文站黄河水的含沙量与时间、水位、水流量的关系,并估算近 6 年该水

文站的年总水流量和年总排沙量。

问题 2 分析近 6 年该水文站水沙通量的突变性、季节性和周期性等特性,研究水沙通量

的变化规律。

问题 3 根据该水文站水沙通量的变化规律,预测分析该水文站未来两年水沙通量的变化

趋势,并为该水文站制订未来两年最优的采样监测方案(采样监测次数和具体时间等),使其

既能及时掌握水沙通量的动态变化情况,又能最大程度地减少监测成本资源。

问题 4 根据该水文站的水沙通量和河底高程的变化情况,分析每年 6-7 月小浪底水库进

行“调水调沙”的实际效果。如果不进行“调水调沙”,10 年以后该水文站的河底高程会如何?

附件 1 2016-2021 年黄河水沙监测数据

附件 2 黄河断面的测量数据

附件 3 黄河部分监测点的监测数据

附录 说明

(1) “水位”和“河底高程”均以“1985 国家高程基准”(海拔 72.26 米)为基准面。

(2) 附件中的“起点距离”以河岸边某定点作为起点。


三、参考代码私信

🍅 论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计



相关文章
|
6月前
|
人工智能 数据可视化 数据挖掘
【python】Python航空公司客户价值数据分析(代码+论文)【独一无二】
【python】Python航空公司客户价值数据分析(代码+论文)【独一无二】
515 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
84 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
6月前
|
人工智能 数据挖掘 机器人
【python】python智能停车场数据分析(代码+数据集)【独一无二】
【python】python智能停车场数据分析(代码+数据集)【独一无二】
206 0
|
3月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
125 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
68 1
|
3月前
|
数据采集 机器学习/深度学习 搜索推荐
【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析
本文介绍了2023钉钉杯复赛A题的智能手机用户监测数据分析,包括数据预处理、特征提取、推荐模型建立与评价的Python代码实现,旨在通过用户使用记录预测APP使用情况并建立推荐系统。
72 0
【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【2023 年第二届钉钉杯大学生大数据挑战赛初赛】 初赛 A:智能手机用户监测数据分析 问题一Python代码分析
本文提供了2023年第二届钉钉杯大学生大数据挑战赛初赛A题"智能手机用户监测数据分析"的Python代码分析,包括数据预处理、特征工程、聚类分析等步骤,以及如何使用不同聚类算法进行用户行为分析。
70 0
【2023 年第二届钉钉杯大学生大数据挑战赛初赛】 初赛 A:智能手机用户监测数据分析 问题一Python代码分析
|
3月前
|
供应链 算法 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛B题的解决方案,深入分析了产品订单数据,并使用Arimax和Var模型进行了需求预测,旨在为企业供应链管理提供科学依据,论文共23页并包含实现代码。
97 0
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
|
3月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析的新手指南深入浅出操作系统:从理论到代码实践
【8月更文挑战第30天】在数据驱动的世界中,掌握数据分析技能变得越来越重要。本文将引导你通过Python这门强大的编程语言来探索数据分析的世界。我们将从安装必要的软件包开始,逐步学习如何导入和清洗数据,以及如何使用Pandas库进行数据操作。文章最后会介绍如何使用Matplotlib和Seaborn库来绘制数据图表,帮助你以视觉方式理解数据。无论你是编程新手还是有经验的开发者,这篇文章都将为你打开数据分析的大门。
|
3月前
|
数据可视化 数据挖掘 数据处理
【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】
【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】