多种模态控制的背景生成技术

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 在保持输入主体不变的情况下生成背景的需求广泛存在,可用于海报生成、商品换背景多种场景。本文介绍一种使用扩散模型生成背景的技术,背景生成内容可接受图像、文字prompt和图像边缘edge等3中不同的引导方式,这些引导方式可以组合使用,灵活的控制生成背景的内容。该模型具有很好的通用性,对主体内容无限制,适用各种不同的图像主体,例如各类商品、动物甚至人像等。

一、简介

在保持输入主体不变的情况下生成背景的需求广泛存在,可用于海报生成、商品换背景多种场景。本文介绍一种使用扩散模型生成背景的技术,背景生成内容可接受图像、文字prompt和图像边缘edge等3中不同的引导方式,这些引导方式可以组合使用,灵活的控制生成背景的内容。该模型具有很好的通用性,对主体内容无限制,适用各种不同的图像主体,例如各类商品、动物甚至人像等。

二、模型结构

image.png

首先输入需要生成背景的主体, 使用一种或者多种引导方式来控制生成的背景内容。

三、效果展示

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png

image.pngimage.png


四、生成引导方式

1. 图像引导

使用图像来引导控制背景生成的内容,适用于手头已有合适的图像,想要为主体生成类似的背景。可以免去写文本prompt的烦恼,所见即所得。

引导图像:

image.png

生成效果:

image.pngimage.png

2. 文字引导

引导文本: 光滑桌面,窗外有山有水

image.pngimage.png

3. 图像+文字引导

引导图像:image.png

仅图像引导效果:

image.pngimage.png

增加引导文本: 远处有晚霞

图像+文本引导效果如下:

image.pngimage.png

4. 使用边缘进行精确的空间控制

图像引导和文本引导都能对背景的整体环境内容、风格有较好的引导效果。如果需要需要对背景元素的位置形状进行精确的控制,就需要使用呢边缘edge进行生成控制。

引导文本:鲜花盛开。引导图像和引导边缘如下:

image.pngimage.png

生成效果:

image.pngimage.png

还可以设置边缘引导图层到主体图层的上面,形成更加逼真的遮挡效果:

image.pngimage.png

目录
相关文章
|
6天前
|
人工智能 自然语言处理 并行计算
VITRON:开源像素级视觉大模型,同时满足图像与视频理解、生成、分割和编辑等视觉任务
VITRON 是由 Skywork AI、新加坡国立大学和南洋理工大学联合推出的像素级视觉大模型,支持图像与视频的理解、生成、分割和编辑,适用于多种视觉任务。
49 13
VITRON:开源像素级视觉大模型,同时满足图像与视频理解、生成、分割和编辑等视觉任务
|
11天前
|
人工智能 自然语言处理
DynamicControl:腾讯推出动态地条件控制图像生成框架,结合了多模态大语言模型的推理能力和文生图模型的生成能力
DynamicControl 是腾讯优图联合南洋理工等机构推出的动态条件控制图像生成新框架,通过自适应选择不同条件,显著增强了图像生成的可控性。
45 11
DynamicControl:腾讯推出动态地条件控制图像生成框架,结合了多模态大语言模型的推理能力和文生图模型的生成能力
|
24天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
68 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
1月前
|
机器学习/深度学习 人工智能 编解码
OminiControl:AI图像生成框架,实现图像主题控制和空间精确控制
OminiControl 是一个高度通用且参数高效的 AI 图像生成框架,专为扩散变换器模型设计,能够实现图像主题控制和空间精确控制。该框架通过引入极少量的额外参数(0.1%),支持主题驱动控制和空间对齐控制,适用于多种图像生成任务。
73 10
OminiControl:AI图像生成框架,实现图像主题控制和空间精确控制
|
4月前
|
机器学习/深度学习 数据采集 算法
深度学习之思维控制的设备
基于深度学习的思维控制设备是一种创新技术,旨在通过解析脑电图(EEG)等脑信号,使用户能够通过思维直接控制设备。这一领域结合了脑-机接口(BCI)技术和深度学习,广泛应用于医疗、游戏和辅助设备等领域。
30 2
|
7月前
|
编解码 自然语言处理 计算机视觉
超越CVPR 2024方法,DynRefer在区域级多模态识别任务上,多项SOTA
【6月更文挑战第29天】DynRefer,一款超越CVPR 2024的多模态识别工具,通过模拟人类视觉的动态分辨率,提升区域级任务的准确性和适应性。在区域字幕生成、识别和属性检测上取得SOTA,但计算成本高且可能依赖于对齐精度。[链接: https://arxiv.org/abs/2405.16071]
63 1
|
传感器 机器学习/深度学习 编解码
自动驾驶 | 毫米波雷达视觉融合方案综述(数据级/决策级/特征级融合)
自动驾驶在复杂场景下的目标检测任务至关重要,而毫米波雷达和视觉融合是确保障碍物精准检测的主流解决方案。本论文详细介绍了基于毫米波雷达和视觉融合的障碍物检测方法,从任务介绍、评估标准和数据集三方面展开。
自动驾驶 | 毫米波雷达视觉融合方案综述(数据级/决策级/特征级融合)
|
机器学习/深度学习 数据采集 TensorFlow
深度学习的实时背景虚化
深度学习的实时背景虚化
115 0
|
文字识别 算法 Shell
突破边界:文本检测算法的革新与应用前景
突破边界:文本检测算法的革新与应用前景
突破边界:文本检测算法的革新与应用前景
|
传感器 Web App开发 运维
5620亿参数,最大多模态模型控制机器人,谷歌把具身智能玩出新高度
5620亿参数,最大多模态模型控制机器人,谷歌把具身智能玩出新高度
180 1

热门文章

最新文章