Linux内核基础篇——动态输出调试

简介: Linux内核基础篇——动态输出调试

上篇说到printk调试,但printk是全局的,只能设置输出等级。而动态输出可以动态选择打开某个内核子系统的输出,可以有选择性地打开某些模块的输出。

配置内核编译选项

要使用动态输出,必须在配置内核时打开CONFIG_DYNAMIC_DEBUG宏。内核代码里使用大量pr_debug()/dev_dbg()函数来输出信息,这些就使用了动态输出。

需要打开的内核配置选项:

CONFIG_DEBUG_FS=y
CONFIG_DYNAMIC_DEBUG=y

CONFIG_DYNAMIC_DEBUG是配置动态输出,它依赖于CONFIG_DEBUG_FS,而CONFIG_DEBUG_FSdebugfs文件系统

打开内核配置后,我们还需要挂载debugfs文件系统

debugfs文件系统挂载

动态输出在debugfs文件系统中有一个control文件节点,这个文件节点记录了系统中所有使用动态输出技术的文件名路径、输出所在的行号、模块名字和要输出的语句

debugfs默认会挂载到/sys/kernel/debug,如果没有挂载,可以执行以下命令挂载:

# mount -t debugfs none /sys/kernel/debug/

挂载debugfs文件系统后,可以查看control节点内容:

# cat /sys/kernel/debug/dynamic_debug/control

动态输出使用

打开svcsock.c文件中所有的动态输出语句

# echo 'file svcsock.c +p' > /sys/kernel/debug/dynamic_debug/control

打开usbcore模块中所有的动态输出语句

# echo 'module usbcore +p' > /sys/kernel/debug/dynamic_debug/control

打开svc_process()函数中所有的动态输出语句

# echo 'func svc_process() +p' > /sys/kernel/debug/dynamic_debug/control

打开文件路径包含usb的文件里所有的动态输出语句

# echo -n '*usb* +p' > /sys/kernel/debug/dynamic_debug/control

打开系统所有的动态输出语句

# echo -n '+p' > /sys/kernel/debug/dynamic_debug/control

上面是打开动态输出语句的例子,除了能输出pr_debug()/dev_dbg()函数中定义的输出信息外,还能输出一些额外信息,如函数名、行号、模块名字以及线程ID等

  • p:打开动态输出语句
  • f:输出函数名
  • l:输出行号
  • m:输出模块名字
  • t:输出线程ID

另外,还可以在各个子系统的Makefile中添加ccflags来打开动态输出语句

<../Makefile>
ccflags-y += -DDEBUG
ccflags-y += -DVERBOSE_DEBUG

实际案例

例如在一个led驱动中的open()、write()等函数开头添加一句pr_debug("%s enter\n", __func__);

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
static int major = 0;
static char kernel_buf[1024];
static struct class *hello_class;
#define MIN(a, b) (a < b ? a : b)
static ssize_t hello_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
 int err;
 pr_debug("%s enter\n", __func__);
 err = copy_to_user(buf, kernel_buf, MIN(1024, size));
 return MIN(1024, size);
}
static ssize_t hello_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
 int err;
 pr_debug("%s enter\n", __func__);
 err = copy_from_user(kernel_buf, buf, MIN(1024, size));
 return MIN(1024, size);
}
static int hello_drv_open (struct inode *node, struct file *file)
{
 pr_debug("%s enter\n", __func__);
 return 0;
}
static int hello_drv_close (struct inode *node, struct file *file)
{
 pr_debug("%s enter\n", __func__);
 return 0;
}
/* 2. 定义自己的file_operations结构体                                              */
static struct file_operations hello_drv = {
 .owner  = THIS_MODULE,
 .open    = hello_drv_open,
 .read    = hello_drv_read,
 .write   = hello_drv_write,
 .release = hello_drv_close,
};
static int __init hello_init(void)
{
 int err;
 pr_debug("%s enter\n", __func__);
 major = register_chrdev(0, "hello", &hello_drv);  /* /dev/hello */
 hello_class = class_create(THIS_MODULE, "hello_class");
 err = PTR_ERR(hello_class);
 if (IS_ERR(hello_class)) {
  unregister_chrdev(major, "hello");
  return -1;
 }
 device_create(hello_class, NULL, MKDEV(major, 0), NULL, "hello"); /* /dev/hello */
 return 0;
}
static void __exit hello_exit(void)
{
 pr_debug("%s enter\n", __func__);
 device_destroy(hello_class, MKDEV(major, 0));
 class_destroy(hello_class);
 unregister_chrdev(major, "hello");
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");

为了方面查看,先清除内核输出:

# dmesg -c

然后加载驱动,执行dmesg查看是否有打印:

# insmod hello_drv.ko
# dmesg

此时没有pr_debug()的打印。这时再使用动态输出打开hello_drv模块的动态输出:

# echo 'module hello_drv +p' > /sys/kernel/debug/dynamic_debug/control

然后执行该驱动的应用层程序,使其调用到驱动的open、write、close函数,从而执行pr_debug():

# ./hello_drv_test -w 10

再查看demsg内容:

可以看到,当打开了hello_drv模块的动态输出后,驱动中的pr_debug()语句就可以正常打印了。

再看看debugfs的control节点:

# cat /sys/kernel/debug/dynamic_debug/control

control节点记录了刚刚执行pr_debug()时的文件名、所在行号、模块名、函数名和输出语句(p表示动态输出的语句)。

end

猜你喜欢

Linux内核基础篇——printk调试

Linux内核基础篇——initcall

RISC-V SiFive U64内核——HPM硬件性能监视器

RISC-V SiFive U64内核——L2 Prefetcher预取器

RISC-V SiFive U54内核——PMP物理内存保护

RISC-V SiFive U54内核——PLIC平台级中断控制器

RISC-V SiFive U54内核——CLINT中断控制器

RISC-V SiFive U54内核——中断和异常详解

实战 | RISC-V Linux入口地址2M预留内存优化

RISC-V Linux启动之页表创建分析

RISC-V Linux汇编启动过程分析

RISC-V 入门笔记(新手必看!)

教你在QEMU上运行RISC-V Linux

OpenSBI三种固件的区别

写给新手的MMU工作原理

相关文章
|
10天前
|
Linux
Linux(5)WIFI/BT调试笔记
Linux(5)WIFI/BT调试笔记
31 0
|
6天前
|
网络协议 算法 Linux
【Linux】深入探索:Linux网络调试、追踪与优化
【Linux】深入探索:Linux网络调试、追踪与优化
|
2天前
|
运维 监控 Linux
提升系统稳定性:Linux内核参数调优实战
【5月更文挑战第1天】 在运维领域,保障服务器的高效稳定运行是核心任务之一。Linux操作系统因其开源、可靠和灵活的特点被广泛应用于服务器中。本文将深入探讨通过调整Linux内核参数来优化系统性能,提升服务器的稳定性和响应能力。文章首先介绍了内核参数调优的必要性和基本原则,然后详细阐述了调优过程中的关键步骤,包括如何监控当前系统状态,确定性能瓶颈,选择合适的参数进行调优,以及调优后的测试与验证。最后,文中提供了一些常见问题的解决策略和调优的最佳实践。
16 5
|
2天前
|
算法 大数据 Linux
深入理解Linux内核的进程调度机制
【4月更文挑战第30天】操作系统的核心职能之一是有效地管理和调度进程,确保系统资源的合理分配和高效利用。在众多操作系统中,Linux因其开源和高度可定制的特点,在进程调度机制上展现出独特优势。本文将深入探讨Linux内核中的进程调度器——完全公平调度器(CFS),分析其设计理念、实现原理及面临的挑战,并探索未来可能的改进方向。
|
3天前
|
算法 Linux 调度
探索Linux内核:进程调度的奥秘
【4月更文挑战第30天】 在多任务操作系统中,进程调度是核心功能之一,它决定了处理器资源的分配。本文深入分析了Linux操作系统的进程调度机制,从调度器的基本原理到复杂的调度策略,以及它们如何影响系统性能和用户体验。通过剖析进程优先级、时间片分配以及实时性要求等方面,揭示了Linux如何在众多运行着的进程中做出快速而公平的决策,确保系统的高效与稳定运行。
|
3天前
|
算法 安全 Linux
深度解析:Linux内核内存管理机制
【4月更文挑战第30天】 在操作系统领域,内存管理是核心功能之一,尤其对于多任务操作系统来说更是如此。本文将深入探讨Linux操作系统的内核内存管理机制,包括物理内存的分配与回收、虚拟内存的映射以及页面替换算法等关键技术。通过对这些技术的详细剖析,我们不仅能够理解操作系统如何高效地利用有限的硬件资源,还能领会到系统设计中的性能与复杂度之间的权衡。
|
4天前
|
弹性计算 网络协议 Shell
自动优化Linux 内核参数
【4月更文挑战第29天】
5 1
|
4天前
|
弹性计算 网络协议 Linux
自动优化 Linux 内核参数
【4月更文挑战第28天】
11 0
|
5天前
|
网络协议 Linux 开发工具
|
10天前
|
存储 Linux Android开发
RK3568 Android/Linux 系统动态更换 U-Boot/Kernel Logo
RK3568 Android/Linux 系统动态更换 U-Boot/Kernel Logo
30 0

热门文章

最新文章