Linux内核基础篇——动态输出调试

简介: Linux内核基础篇——动态输出调试

上篇说到printk调试,但printk是全局的,只能设置输出等级。而动态输出可以动态选择打开某个内核子系统的输出,可以有选择性地打开某些模块的输出。

配置内核编译选项

要使用动态输出,必须在配置内核时打开CONFIG_DYNAMIC_DEBUG宏。内核代码里使用大量pr_debug()/dev_dbg()函数来输出信息,这些就使用了动态输出。

需要打开的内核配置选项:

CONFIG_DEBUG_FS=y
CONFIG_DYNAMIC_DEBUG=y

CONFIG_DYNAMIC_DEBUG是配置动态输出,它依赖于CONFIG_DEBUG_FS,而CONFIG_DEBUG_FSdebugfs文件系统

打开内核配置后,我们还需要挂载debugfs文件系统

debugfs文件系统挂载

动态输出在debugfs文件系统中有一个control文件节点,这个文件节点记录了系统中所有使用动态输出技术的文件名路径、输出所在的行号、模块名字和要输出的语句

debugfs默认会挂载到/sys/kernel/debug,如果没有挂载,可以执行以下命令挂载:

# mount -t debugfs none /sys/kernel/debug/

挂载debugfs文件系统后,可以查看control节点内容:

# cat /sys/kernel/debug/dynamic_debug/control

动态输出使用

打开svcsock.c文件中所有的动态输出语句

# echo 'file svcsock.c +p' > /sys/kernel/debug/dynamic_debug/control

打开usbcore模块中所有的动态输出语句

# echo 'module usbcore +p' > /sys/kernel/debug/dynamic_debug/control

打开svc_process()函数中所有的动态输出语句

# echo 'func svc_process() +p' > /sys/kernel/debug/dynamic_debug/control

打开文件路径包含usb的文件里所有的动态输出语句

# echo -n '*usb* +p' > /sys/kernel/debug/dynamic_debug/control

打开系统所有的动态输出语句

# echo -n '+p' > /sys/kernel/debug/dynamic_debug/control

上面是打开动态输出语句的例子,除了能输出pr_debug()/dev_dbg()函数中定义的输出信息外,还能输出一些额外信息,如函数名、行号、模块名字以及线程ID等

  • p:打开动态输出语句
  • f:输出函数名
  • l:输出行号
  • m:输出模块名字
  • t:输出线程ID

另外,还可以在各个子系统的Makefile中添加ccflags来打开动态输出语句

<../Makefile>
ccflags-y += -DDEBUG
ccflags-y += -DVERBOSE_DEBUG

实际案例

例如在一个led驱动中的open()、write()等函数开头添加一句pr_debug("%s enter\n", __func__);

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
static int major = 0;
static char kernel_buf[1024];
static struct class *hello_class;
#define MIN(a, b) (a < b ? a : b)
static ssize_t hello_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
 int err;
 pr_debug("%s enter\n", __func__);
 err = copy_to_user(buf, kernel_buf, MIN(1024, size));
 return MIN(1024, size);
}
static ssize_t hello_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
 int err;
 pr_debug("%s enter\n", __func__);
 err = copy_from_user(kernel_buf, buf, MIN(1024, size));
 return MIN(1024, size);
}
static int hello_drv_open (struct inode *node, struct file *file)
{
 pr_debug("%s enter\n", __func__);
 return 0;
}
static int hello_drv_close (struct inode *node, struct file *file)
{
 pr_debug("%s enter\n", __func__);
 return 0;
}
/* 2. 定义自己的file_operations结构体                                              */
static struct file_operations hello_drv = {
 .owner  = THIS_MODULE,
 .open    = hello_drv_open,
 .read    = hello_drv_read,
 .write   = hello_drv_write,
 .release = hello_drv_close,
};
static int __init hello_init(void)
{
 int err;
 pr_debug("%s enter\n", __func__);
 major = register_chrdev(0, "hello", &hello_drv);  /* /dev/hello */
 hello_class = class_create(THIS_MODULE, "hello_class");
 err = PTR_ERR(hello_class);
 if (IS_ERR(hello_class)) {
  unregister_chrdev(major, "hello");
  return -1;
 }
 device_create(hello_class, NULL, MKDEV(major, 0), NULL, "hello"); /* /dev/hello */
 return 0;
}
static void __exit hello_exit(void)
{
 pr_debug("%s enter\n", __func__);
 device_destroy(hello_class, MKDEV(major, 0));
 class_destroy(hello_class);
 unregister_chrdev(major, "hello");
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");

为了方面查看,先清除内核输出:

# dmesg -c

然后加载驱动,执行dmesg查看是否有打印:

# insmod hello_drv.ko
# dmesg

此时没有pr_debug()的打印。这时再使用动态输出打开hello_drv模块的动态输出:

# echo 'module hello_drv +p' > /sys/kernel/debug/dynamic_debug/control

然后执行该驱动的应用层程序,使其调用到驱动的open、write、close函数,从而执行pr_debug():

# ./hello_drv_test -w 10

再查看demsg内容:

可以看到,当打开了hello_drv模块的动态输出后,驱动中的pr_debug()语句就可以正常打印了。

再看看debugfs的control节点:

# cat /sys/kernel/debug/dynamic_debug/control

control节点记录了刚刚执行pr_debug()时的文件名、所在行号、模块名、函数名和输出语句(p表示动态输出的语句)。

end

猜你喜欢

Linux内核基础篇——printk调试

Linux内核基础篇——initcall

RISC-V SiFive U64内核——HPM硬件性能监视器

RISC-V SiFive U64内核——L2 Prefetcher预取器

RISC-V SiFive U54内核——PMP物理内存保护

RISC-V SiFive U54内核——PLIC平台级中断控制器

RISC-V SiFive U54内核——CLINT中断控制器

RISC-V SiFive U54内核——中断和异常详解

实战 | RISC-V Linux入口地址2M预留内存优化

RISC-V Linux启动之页表创建分析

RISC-V Linux汇编启动过程分析

RISC-V 入门笔记(新手必看!)

教你在QEMU上运行RISC-V Linux

OpenSBI三种固件的区别

写给新手的MMU工作原理

相关文章
|
7天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
33 4
|
11天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
32 6
|
12天前
|
缓存 NoSQL Linux
Linux调试
本文介绍了Linux调试、性能分析和追踪的培训资料,涵盖调试、性能分析和追踪的基础知识及常用工具。
191 6
Linux调试
|
10天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
32 9
|
8天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
28 6
|
9天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
29 5
|
10天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
11天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
10天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
9天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
27 2

热门文章

最新文章

下一篇
无影云桌面