数据库内核那些事|细说PolarDB优化器查询变换:IN-List变换

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本篇文章将对PolarDB的IN-List变换进行深入阐述,从而让我们对PolarDB的查询改写能力有更感性的认知。

文/陈江(恬泰)

导读

数据库的查询优化器是整个系统的"大脑",一条SQL语句执行是否高效在不同的优化决策下可能会产生几个数量级的性能差异,因此优化器也是数据库系统中最为核心的组件和竞争力之一。阿里云瑶池旗下的云原生数据库PolarDB MySQL版作为领先的云原生数据库,希望能够应对广泛用户场景、承接各类用户负载,助力企业数据业务持续在线、数据价值不断放大,因此对优化器能力的打磨是必须要做的工作之一。


本系列将从PolarDB for MySQL的查询变换能力开始,介绍我们在这个优化器方向上逐步积累的一些工作。


*本篇为「PolarDB优化器查询变换」系列第四篇,前三篇内容分别解读了:

1. Join消除

2. 窗口函数

3. Join条件下推


引言

PolarDB MySQL作为一款HTAP数据库,在复杂SQL查询优化能力上做了很多深入工作。早期用户SQL都非常简单,MySQL单机能力也有限。随着业务数据越来越多,业务场景越来越复杂,迫切需要越来越强大的数据库来满足统计、报表需求。


PolarDB在并行能力、查询变换能力、优化器等方面都做了非常深入的工作,这些工作有一个总目标:让用户的复杂查询执行得越来越快。本篇文章将对PolarDB的IN-List变换进行深入阐述,从而让我们对PolarDB的查询改写能力有更感性的认知。下面是一个常见的慢SQL:in函数运算,里面的常量比较多。


select        sum(l_extendedprice)/7.0as avg_yearly
from        lineitem
where            l_partkey in(9628136,19958441,10528766,.......); #in list里面有上千个常量值。


SQL语句是常见的单表过滤查询,然后进行agg汇总,实际执行耗时比较长,执行比较慢的原因是IN-List里面有上千个常量值。


原生MySQL


原生的MySQL执行计划如下:


+---------------------------------------------------------------------------------------------------+| EXPLAIN                                                                                           |+---------------------------------------------------------------------------------------------------+|-> Aggregate: sum(lineitem.L_EXTENDEDPRICE)-> Filter:(lineitem.L_PARTKEYin(9628136,19958441,10528766,....)(cost=60858714.81 rows=297355930)->Table scan on lineitem  (cost=60858714.81 rows=594711859)|+---------------------------------------------------------------------------------------------------+


执行过程是线性scan lineitem 5.9亿条数据,逐条去判断是不是在IN-List里面,这个算子是Item_func_in,in集合元素个数比较多,我们使用10W常量值进行测试,这个算子做求值运算耗时较长,整体完成需要 375s。


具体看下Item_func_in代码执行逻辑:


  • 判断是否可以二分查找,如可以二分查找,将IN-List转成有序数组;
  • 如果产生了有序数组,则执行时优先尝试二分查找;
  • 否则,线性scan,逐一判断左表达式是否等于IN-List里面的item。


可以看到求值逻辑已经是教优的了,这个算子基本没有优化空间了。主要是外层循环次数太多,如果能减少外层的大loop,那么就能降低延时。


PolarDB

PolarDB解决问题的思路是对该SQL做查询变换, 把IN-List转变成一张物化表,加入join list,具体变换过程如下:


Step 1:转成in子查询,上述SQL改写为

select ... from lineitem where l_partkey in(...)====>select ... from lineitem where l_partkey in(select dt._col_1from(values(9628136),(19958441),...) dt)

Step 2:SubQuery Unnest-消除子查询


子查询已经是非相关的,通过SU技术,可以消除子查询,转化为semi-join。物化表经过去重,并且Join列非空,进而可以转化为inner-join。


SQL将继续改写为:

====>select ... from lineitem,(values(9628136),(19958441),...) dt)where l_partkey = dt._col_1

通过这种变换能到得如下好处:


不用逐条去做filter,因为MySQL执行器是火山模型,增加了一个filter算子就增加了一层虚函数调用;

Join有join buffer,可以一个batch一个batch参与Join,这是转成join list的一个好处;

转成join list,join的优化非常多,如join order&access path,总能选到更优plan。


最后执行的plan如下:

+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| EXPLAIN                                                                                                                                                                                                                                                                                                                                                                 |+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+|-> Aggregate: sum(lineitem.L_EXTENDEDPRICE)-> Nested loop inner join->Table scan on dt
-> Materialize with deduplication
-> scan onin-list:100000 rows
-> Index lookup on lineitem using LINEITEM_FK2 (L_PARTKEY=dt._col_1), with index condition:(lineitem.L_PARTKEY= dt._col_1)(cost=7.34 rows=29)

物化表数据量少,作为外表,inner-join成功使用lineitem索引,只要扫10万条物化表记录,然后再使用LINEITEM_FK2索引进行连接,整条SQL执行下来只需要32s。


测试效果


PolarDB IN-List优化后在 TPCH 100G 数据集上比原生方式提升11.5倍,又因为PolarDB支持并行查询,32并行度模式下提升上百倍。

image.png


总结

原理上,PolarDB做完IN-List转换为Join-List后,能得到如下两方面的提升:


  • IN-List里面的常量都经过物化去重,基数可能会有不小的下降,这取决于重复值;
  • IN-List消去,变成了一张物化表,参与Join-List后,有更多access path选择,比如选择更好的index,更多的Join方式:hash join还是nest loop join。


细微之处见真功夫,做IN-List转换还要完成其他工作,如需要适配prepare statement协议、适配并行查询协议等,PolarDB在云数据库市场能做到特性遥遥领先,离不开背后工程师们坚持客户价值第一的初心,后续我们将介绍更多查询改写相关内容,敬请期待。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
9天前
|
Cloud Native 关系型数据库 MySQL
免费体验!高效实现自建 MySQL 数据库平滑迁移至 PolarDB-X
PolarDB-X 是阿里云推出的云原生分布式数据库,支持PB级存储扩展、高并发访问与数据强一致,助力企业实现MySQL平滑迁移。现已开放免费体验,点击即享高效、稳定的数据库升级方案。
免费体验!高效实现自建 MySQL 数据库平滑迁移至 PolarDB-X
|
3月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。
|
11天前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
3月前
|
关系型数据库 分布式数据库 数据库
阿里云PolarDB数据库蝉联SIGMOD最佳论文奖
阿里云PolarDB凭借全球首创基于CXL Switch的分布式内存池技术,在SIGMOD 2025上荣获工业赛道“最佳论文奖”,连续两年蝉联该顶会最高奖项。其创新架构PolarCXLMem打破传统RDMA技术瓶颈,性能提升2.1倍,并已落地应用于内存池化场景,推动大模型推理与多模态存储发展,展现CXL Switch在高速互联中的巨大潜力。
阿里云PolarDB数据库蝉联SIGMOD最佳论文奖
|
18天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
56 3
|
24天前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
2月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
12天前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
|
13天前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
12天前
|
SQL 关系型数据库 MySQL
Mysql数据恢复—Mysql数据库delete删除后数据恢复案例
本地服务器,操作系统为windows server。服务器上部署mysql单实例,innodb引擎,独立表空间。未进行数据库备份,未开启binlog。 人为误操作使用Delete命令删除数据时未添加where子句,导致全表数据被删除。删除后未对该表进行任何操作。需要恢复误删除的数据。 在本案例中的mysql数据库未进行备份,也未开启binlog日志,无法直接还原数据库。

相关产品

  • 云原生数据库 PolarDB